Heat transfer evaluation of (CaTe+SiC) hybrid nanofluid flow based RT42 HC (Rubitherm) phase change material: Cooling photovoltaic panels application

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED Modern Physics Letters B Pub Date : 2024-06-15 DOI:10.1142/s0217984924504402
A. A. Al Qarni, E. Elsaid, Mohamed R. Eid, A. Abdel‐Aty, A. J. Alqarni, M. Abdel-wahed
{"title":"Heat transfer evaluation of (CaTe+SiC) hybrid nanofluid flow based RT42 HC (Rubitherm) phase change material: Cooling photovoltaic panels application","authors":"A. A. Al Qarni, E. Elsaid, Mohamed R. Eid, A. Abdel‐Aty, A. J. Alqarni, M. Abdel-wahed","doi":"10.1142/s0217984924504402","DOIUrl":null,"url":null,"abstract":"This paper inspects the combined effects of heat and mass transfers in a hybridized Williamson viscous nanofluid composed of cadmium telluride (CdTe) and silicon carbide (SiC) nanoparticles in RT42 (Rubitherm) as base fluid in the existence of heat source and thermal radiative aspects. Knowing that the base fluid RT42 is a phase change material (PCM), it is also considered that the surface on which the nanofluid flows is an expandable surface with varying thickness. The influence of chemical reactions process and viscous dissipation on the flow and temperature of the hybridized nanofluid is examined. The parameters’ influences on the problem are evaluated after setting appropriate similarity transformations to transform the collection of major partial differential equations (PDEs) into nondimensional ordinary differential equations (ODEs). The study concludes that the presence of hybridized nanoparticles of CdTe and SiC reduces the horizontal and vertical surface frictional forces of the hybrid nanofluid. The integration of nanoparticles in RT42 enhances heat transfer rates and reduces mass transfer. The thermal radiative variable declines the heat transfer of hybridized nanofluid. The results indicate that altering the variable parameter of surface thickness reduces frictional forces in both directions.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924504402","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper inspects the combined effects of heat and mass transfers in a hybridized Williamson viscous nanofluid composed of cadmium telluride (CdTe) and silicon carbide (SiC) nanoparticles in RT42 (Rubitherm) as base fluid in the existence of heat source and thermal radiative aspects. Knowing that the base fluid RT42 is a phase change material (PCM), it is also considered that the surface on which the nanofluid flows is an expandable surface with varying thickness. The influence of chemical reactions process and viscous dissipation on the flow and temperature of the hybridized nanofluid is examined. The parameters’ influences on the problem are evaluated after setting appropriate similarity transformations to transform the collection of major partial differential equations (PDEs) into nondimensional ordinary differential equations (ODEs). The study concludes that the presence of hybridized nanoparticles of CdTe and SiC reduces the horizontal and vertical surface frictional forces of the hybrid nanofluid. The integration of nanoparticles in RT42 enhances heat transfer rates and reduces mass transfer. The thermal radiative variable declines the heat transfer of hybridized nanofluid. The results indicate that altering the variable parameter of surface thickness reduces frictional forces in both directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 RT42 HC(Rubitherm)相变材料的(CaTe+SiC)混合纳米流体流的传热评估:光伏板冷却应用
本文探讨了由碲化镉(CdTe)和碳化硅(SiC)纳米颗粒组成的杂化威廉姆森粘性纳米流体在 RT42(Rubitherm)基流体中存在热源和热辐射方面的传热和传质综合效应。由于基础流体 RT42 是一种相变材料 (PCM),因此还考虑到纳米流体流动的表面是厚度不同的可膨胀表面。研究了化学反应过程和粘性耗散对杂化纳米流体的流动和温度的影响。通过设置适当的相似性变换,将主要偏微分方程(PDEs)集合转换为二维常微分方程(ODEs),评估了参数对问题的影响。研究得出结论,碲化镉和碳化硅杂化纳米粒子的存在降低了混合纳米流体的水平和垂直表面摩擦力。在 RT42 中集成纳米粒子可提高传热速率,减少传质。热辐射变量降低了混合纳米流体的传热。结果表明,改变表面厚度变量参数可降低两个方向的摩擦力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
期刊最新文献
An appropriate statistical approach for non-equilibrium particle production Analytical analysis of 2D couple stress flow of blood base nanofluids with the influence of viscous dissipation over a stretching surface Thermal improvement of the porous system through numerical solution of nanofluid under the existence of activation energy and Lorentz force A novel study of analytical solutions of some important nonlinear fractional differential equations in fluid dynamics Unsteady MHD dusty fluid flow over a non-isothermal cone embedded in a porous medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1