Improved ECA-ResTCN for Online Classroom Student Attention Recognition

TU Qun, Xiaoru Zhao, Daqing Gong, Qianqian Zhang
{"title":"Improved ECA-ResTCN for Online Classroom Student Attention Recognition","authors":"TU Qun, Xiaoru Zhao, Daqing Gong, Qianqian Zhang","doi":"10.17559/tv-20231013001024","DOIUrl":null,"url":null,"abstract":": With the rapid rise of online classrooms, monitoring student engagement is critical but challenging for educators. This work explores how artificial intelligence (AI) and big data techniques can automatically evaluate student concentration levels in online courses. We developed an end-to-end ResTCN model combining ResNet and temporal convolutional networks (TCN) to extract spatial and temporal video features. Further, we introduced a CutMix data augmentation method and an efficient channel attention (ECA) module to enhance model training. Evaluated on a public dataset of student videos, our approach achieved 63.28% accuracy in classifying student engagement, outperforming state-of-the-art methods. The contributions are a novel spatiotemporal neural architecture, data augmentation strategy, and attention mechanism tailored for the student engagement recognition task. This demonstrates the potential of AI in creating smart education systems.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"10 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20231013001024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: With the rapid rise of online classrooms, monitoring student engagement is critical but challenging for educators. This work explores how artificial intelligence (AI) and big data techniques can automatically evaluate student concentration levels in online courses. We developed an end-to-end ResTCN model combining ResNet and temporal convolutional networks (TCN) to extract spatial and temporal video features. Further, we introduced a CutMix data augmentation method and an efficient channel attention (ECA) module to enhance model training. Evaluated on a public dataset of student videos, our approach achieved 63.28% accuracy in classifying student engagement, outperforming state-of-the-art methods. The contributions are a novel spatiotemporal neural architecture, data augmentation strategy, and attention mechanism tailored for the student engagement recognition task. This demonstrates the potential of AI in creating smart education systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于在线课堂学生注意力识别的改进型 ECA-ResTCN
:随着在线课堂的迅速兴起,监控学生的参与度对教育工作者来说至关重要,但也极具挑战性。这项工作探讨了人工智能(AI)和大数据技术如何在在线课程中自动评估学生的专注程度。我们开发了一个端到端的 ResTCN 模型,结合 ResNet 和时序卷积网络 (TCN),以提取空间和时间视频特征。此外,我们还引入了 CutMix 数据增强方法和高效通道注意(ECA)模块,以增强模型训练。在学生视频的公共数据集上进行评估后,我们的方法在学生参与度分类方面达到了 63.28% 的准确率,优于最先进的方法。我们的贡献在于针对学生参与度识别任务定制了新颖的时空神经架构、数据增强策略和注意力机制。这证明了人工智能在创建智能教育系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Annotation Method of Gangue Data Based on Digital Image Processing Determination of FreeCarbon Dioxide Emissions in Mineral Fertilizers Production Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network Study and Optimization of Ethanol (LRF) Juliflora Biodiesel (HRF) Fuelled RCCI Engine with and without EGR System Research on Damage Detection of Civil Structures Based on Machine Learning of Multiple Vegetation Index Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1