Multi-Environment Adaptive Fast Constant False Alarm Detection Algorithm Optimization Strategy

LI Wei, Qian Wang, Yuan-shuai Lan, Chang-song Ma
{"title":"Multi-Environment Adaptive Fast Constant False Alarm Detection Algorithm Optimization Strategy","authors":"LI Wei, Qian Wang, Yuan-shuai Lan, Chang-song Ma","doi":"10.17559/tv-20230703000781","DOIUrl":null,"url":null,"abstract":": It takes a long time to detect target information in noisy radar information and reduce the probability of false alarm. Therefore, it has become a research direction to reduce the probability of false alarm and the time of effective target detection. This paper introduces a new method to reduce the occurrence of false alarm in non-uniform environment and improve the efficiency of target detection. The proposed method involves a faster and more stable method that involves preprocessing the data set, splitting it into smaller parts, and utilizing a KTH minimum value M determined by an ordered statistics class constant false alarm detection algorithm. Each data point in the small segment is then compared to M , anything above M is classified as a target, and anything below M is ignored as clutter. Then ESVI-CFAR detection was performed on the selected target to obtain the final detection result. Experimental results show that the proposed method is superior to the traditional VI-CFAR and has better target detection performance.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"81 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20230703000781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: It takes a long time to detect target information in noisy radar information and reduce the probability of false alarm. Therefore, it has become a research direction to reduce the probability of false alarm and the time of effective target detection. This paper introduces a new method to reduce the occurrence of false alarm in non-uniform environment and improve the efficiency of target detection. The proposed method involves a faster and more stable method that involves preprocessing the data set, splitting it into smaller parts, and utilizing a KTH minimum value M determined by an ordered statistics class constant false alarm detection algorithm. Each data point in the small segment is then compared to M , anything above M is classified as a target, and anything below M is ignored as clutter. Then ESVI-CFAR detection was performed on the selected target to obtain the final detection result. Experimental results show that the proposed method is superior to the traditional VI-CFAR and has better target detection performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多环境自适应快速恒定误报检测算法优化策略
:在噪声雷达信息中探测目标信息并降低误报概率需要很长时间。因此,降低误报概率和有效检测目标的时间成为研究方向。本文介绍了一种在非均匀环境下减少误报发生、提高目标检测效率的新方法。所提出的方法涉及一种更快、更稳定的方法,即对数据集进行预处理,将其分割成更小的部分,并利用有序统计类恒定误报检测算法确定的 KTH 最小值 M。然后将小部分中的每个数据点与 M 进行比较,高于 M 的数据点被归类为目标,低于 M 的数据点被忽略为杂波。然后对选定的目标进行 ESVI-CFAR 检测,得到最终的检测结果。实验结果表明,所提出的方法优于传统的 VI-CFAR,具有更好的目标检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Annotation Method of Gangue Data Based on Digital Image Processing Determination of FreeCarbon Dioxide Emissions in Mineral Fertilizers Production Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network Study and Optimization of Ethanol (LRF) Juliflora Biodiesel (HRF) Fuelled RCCI Engine with and without EGR System Research on Damage Detection of Civil Structures Based on Machine Learning of Multiple Vegetation Index Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1