Influence of Nitrogen Position on the Electrocatalytic Performance of B,N-Codoped Carbon Quantum Dots for the Oxygen Reduction Reaction

Suanto Syahputra, E. Sgreccia, A. Nallayagari, F. Vacandio, Saulius Kaciulis, M. Di Vona, Philippe Knauth
{"title":"Influence of Nitrogen Position on the Electrocatalytic Performance of B,N-Codoped Carbon Quantum Dots for the Oxygen Reduction Reaction","authors":"Suanto Syahputra, E. Sgreccia, A. Nallayagari, F. Vacandio, Saulius Kaciulis, M. Di Vona, Philippe Knauth","doi":"10.1149/1945-7111/ad5872","DOIUrl":null,"url":null,"abstract":"\n Nanocomposites containing B,N-codoped carbon quantum dots (CQDs) and an anion exchange ionomer based on poly(2,6-dimethylpolyphenyleneoxide) with trimethylammonium groups on long side chains (PPO-LC) were studied as catalytic electrodes for the oxygen reduction reaction (ORR). The objective was to reveal the impact of graphitic vs pyridinic/pyrrolic nitrogen on the ORR electrocatalysis. The CQDs were prepared by hydrothermal synthesis and analyzed by X-ray photoelectron spectroscpy to ascertain the B and N content and their position. The electrodes were prepared by drop-casting an ink of CQDs and PPO-LC on acid-treated carbon paper support. Characterizations of the electrodes included water contact angle, capacitance measurements, Fourier transform infrared spectra as well as scanning electron microscopy and optical microscopy. The onset and half-wave potentials, limiting current densities, Koutecky-Levich and Tafel plots revealed that the sample with only pyridinic/pyrrolic nitrogen showed the lowest electrocatalytic performance, underlining the importance of graphitic nitrogen for good ORR activity. Four-electron reduction was observed for the samples containing graphitic nitrogen. The onset potential (0.92 V/RHE) was among the best in the literature for carbonaceous materials. Finally, durability tests were performed indicating a good long-time stability of the electrodes; the electrode degradation was analyzed by impedance spectroscopy.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocomposites containing B,N-codoped carbon quantum dots (CQDs) and an anion exchange ionomer based on poly(2,6-dimethylpolyphenyleneoxide) with trimethylammonium groups on long side chains (PPO-LC) were studied as catalytic electrodes for the oxygen reduction reaction (ORR). The objective was to reveal the impact of graphitic vs pyridinic/pyrrolic nitrogen on the ORR electrocatalysis. The CQDs were prepared by hydrothermal synthesis and analyzed by X-ray photoelectron spectroscpy to ascertain the B and N content and their position. The electrodes were prepared by drop-casting an ink of CQDs and PPO-LC on acid-treated carbon paper support. Characterizations of the electrodes included water contact angle, capacitance measurements, Fourier transform infrared spectra as well as scanning electron microscopy and optical microscopy. The onset and half-wave potentials, limiting current densities, Koutecky-Levich and Tafel plots revealed that the sample with only pyridinic/pyrrolic nitrogen showed the lowest electrocatalytic performance, underlining the importance of graphitic nitrogen for good ORR activity. Four-electron reduction was observed for the samples containing graphitic nitrogen. The onset potential (0.92 V/RHE) was among the best in the literature for carbonaceous materials. Finally, durability tests were performed indicating a good long-time stability of the electrodes; the electrode degradation was analyzed by impedance spectroscopy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮位置对掺杂 B,N 的碳量子点在氧还原反应中的电催化性能的影响
研究人员将含有掺杂 B、N 的碳量子点(CQDs)和基于长侧链上带有三甲基铵基团的聚(2,6-二甲基聚苯氧化物)阴离子交换离子体(PPO-LC)的纳米复合材料作为氧还原反应(ORR)的催化电极。目的是揭示石墨氮与吡啶/吡咯氮对 ORR 电催化的影响。CQDs 采用水热合成法制备,并通过 X 射线光电子能谱分析确定了 B 和 N 的含量及其位置。电极是通过在酸处理过的碳纸支架上滴铸 CQDs 和 PPO-LC 墨水制备的。电极的表征包括水接触角、电容测量、傅立叶变换红外光谱以及扫描电子显微镜和光学显微镜。起始电位和半波电位、极限电流密度、Koutecky-Levich 图和 Tafel 图显示,仅含有吡啶/吡咯烷氮的样品电催化性能最低,这凸显了石墨氮对良好 ORR 活性的重要性。含有石墨氮的样品出现了四电子还原。起始电位(0.92 V/RHE)是碳质材料文献中最好的。最后,耐久性测试表明电极具有良好的长期稳定性;电极降解情况通过阻抗光谱进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography Mild and Fast Chemical Presodiation of Na0.44MnO2 Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1