Assessing climate change impacts on irrigation water requirements in the Lower Mahanadi Basin: A CMIP6-based spatiotemporal analysis and future projections

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-14 DOI:10.2166/wcc.2024.152
Pushpanjali Kumari, Rahul Kumar Jaiswal, Harendra Prasad Singh
{"title":"Assessing climate change impacts on irrigation water requirements in the Lower Mahanadi Basin: A CMIP6-based spatiotemporal analysis and future projections","authors":"Pushpanjali Kumari, Rahul Kumar Jaiswal, Harendra Prasad Singh","doi":"10.2166/wcc.2024.152","DOIUrl":null,"url":null,"abstract":"\n \n High climate change stress escalates agriculture risks, particularly in nations like India heavily reliant on farming. Previous studies focused on Coupled Model Intercomparison Project Phase (CMIP3) and (CMIP5) scenarios for large river basins, but the heightened risk of local climate changes poses a significant threat to smaller basins, notably affecting crops. This study investigates the spatiotemporal dynamics of climate change impacts on paddy crop irrigation in India's Lower Mahanadi Basin, utilizing the latest general circulation models (GCMs) from the CMIP6, focuses on two emission scenarios, SSP585 and SSP370. Thirteen models were analysed, top six were selected based on statistical criteria like PBIAS, NSE, R2, RSR, and RMSE. Models project climate changes for near- (2025–2050), mid- (2051–2075), and far-future (2076–2100) periods against a baseline (1981–2014), investigating spatiotemporal variations in rainfall, temperature, and irrigation water requirements (IWRs) in the region. In both scenarios, future mean seasonal rainfall is expected to increase compared with the baseline. SSP370 projects a 23.7% rise in minimum rainfall, while maximum rainfall varies by 11.5%. SSP585, on the other hand, projects a 9.53% decrease in maximum IWR and a 28.9% increase in maximum rainfall compared with the baseline. Both scenarios anticipate a 3–4 °C temperature increase in the far-future.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"25 7","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

High climate change stress escalates agriculture risks, particularly in nations like India heavily reliant on farming. Previous studies focused on Coupled Model Intercomparison Project Phase (CMIP3) and (CMIP5) scenarios for large river basins, but the heightened risk of local climate changes poses a significant threat to smaller basins, notably affecting crops. This study investigates the spatiotemporal dynamics of climate change impacts on paddy crop irrigation in India's Lower Mahanadi Basin, utilizing the latest general circulation models (GCMs) from the CMIP6, focuses on two emission scenarios, SSP585 and SSP370. Thirteen models were analysed, top six were selected based on statistical criteria like PBIAS, NSE, R2, RSR, and RMSE. Models project climate changes for near- (2025–2050), mid- (2051–2075), and far-future (2076–2100) periods against a baseline (1981–2014), investigating spatiotemporal variations in rainfall, temperature, and irrigation water requirements (IWRs) in the region. In both scenarios, future mean seasonal rainfall is expected to increase compared with the baseline. SSP370 projects a 23.7% rise in minimum rainfall, while maximum rainfall varies by 11.5%. SSP585, on the other hand, projects a 9.53% decrease in maximum IWR and a 28.9% increase in maximum rainfall compared with the baseline. Both scenarios anticipate a 3–4 °C temperature increase in the far-future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估气候变化对下马哈纳迪盆地灌溉用水需求的影响:基于 CMIP6 的时空分析和未来预测
气候变化带来的巨大压力加剧了农业风险,尤其是在像印度这样严重依赖农业的国家。以往的研究侧重于大型流域的耦合模式相互比较项目第三阶段(CMIP3)和第五阶段(CMIP5)情景,但局部气候变化风险的增加对小型流域构成了重大威胁,特别是对农作物的影响。本研究利用 CMIP6 最新的大气环流模型(GCMs),以 SSP585 和 SSP370 两种排放情景为重点,研究了气候变化对印度下马哈纳迪流域水稻灌溉影响的时空动态。对 13 个模型进行了分析,并根据 PBIAS、NSE、R2、RSR 和 RMSE 等统计标准选出了前 6 个模型。模型预测了以基线(1981-2014 年)为基准的近期(2025-2050 年)、中期(2051-2075 年)和远期(2076-2100 年)的气候变化,研究了该地区降雨、温度和灌溉需水量(IWRs)的时空变化。在这两种情景下,与基线相比,未来平均季节降雨量预计都会增加。SSP370 预测最小降雨量增加 23.7%,最大降雨量增加 11.5%。而 SSP585 预测,与基线相比,最大 IWR 减少 9.53%,最大降雨量增加 28.9%。两种情景都预计远期气温将上升 3-4 °C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. A Biodegradable, Self-Gelling Protease-Grafted Alginate Dressing for Efficient Control of Non-Compressible Hemorrhage. Biomimetic Metal-Organic Framework Decorated by Artificial Bacterium-Binding Protein and Apamin for Treatment of Acute Enteritis. Composite 3D-Printed Scaffold Based on Glucosamine-Loaded Hyaluronic Acid Methacrylate for Osteochondral Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1