Optimal potential shaping on SE(3) via neural ordinary differential equations on Lie groups

Yannik P. Wotte, Federico Califano, Stefano Stramigioli
{"title":"Optimal potential shaping on SE(3) via neural ordinary differential equations on Lie groups","authors":"Yannik P. Wotte, Federico Califano, Stefano Stramigioli","doi":"10.1177/02783649241256044","DOIUrl":null,"url":null,"abstract":"This work presents a novel approach for the optimization of dynamic systems on finite-dimensional Lie groups. We rephrase dynamic systems as so-called neural ordinary differential equations (neural ODEs), and formulate the optimization problem on Lie groups. A gradient descent optimization algorithm is presented to tackle the optimization numerically. Our algorithm is scalable, and applicable to any finite-dimensional Lie group, including matrix Lie groups. By representing the system at the Lie algebra level, we reduce the computational cost of the gradient computation. In an extensive example, optimal potential energy shaping for control of a rigid body is treated. The optimal control problem is phrased as an optimization of a neural ODE on the Lie group SE(3), and the controller is iteratively optimized. The final controller is validated on a state-regulation task.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"4 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241256044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel approach for the optimization of dynamic systems on finite-dimensional Lie groups. We rephrase dynamic systems as so-called neural ordinary differential equations (neural ODEs), and formulate the optimization problem on Lie groups. A gradient descent optimization algorithm is presented to tackle the optimization numerically. Our algorithm is scalable, and applicable to any finite-dimensional Lie group, including matrix Lie groups. By representing the system at the Lie algebra level, we reduce the computational cost of the gradient computation. In an extensive example, optimal potential energy shaping for control of a rigid body is treated. The optimal control problem is phrased as an optimization of a neural ODE on the Lie group SE(3), and the controller is iteratively optimized. The final controller is validated on a state-regulation task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过李群上的神经常微分方程实现 SE(3) 上的最佳势整形
本研究提出了一种在有限维李群上优化动态系统的新方法。我们将动态系统重新表述为所谓的神经常微分方程(neural ODEs),并在李群上提出优化问题。我们提出了一种梯度下降优化算法,以数值方法解决优化问题。我们的算法是可扩展的,适用于任何有限维度的李群,包括矩阵李群。通过在李代数层面表示系统,我们降低了梯度计算的计算成本。在一个广泛的示例中,我们处理了控制刚体的最优势能整形问题。优化控制问题被表述为在李群 SE(3) 上对神经 ODE 的优化,控制器被迭代优化。最终控制器在状态调节任务中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer learning in robotics: An upcoming breakthrough? A review of promises and challenges Selected papers from WAFR 2022 Continuum concentric push–pull robots: A Cosserat rod model Sim-to-real transfer of adaptive control parameters for AUV stabilisation under current disturbance No compromise in solution quality: Speeding up belief-dependent continuous partially observable Markov decision processes via adaptive multilevel simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1