Electrical Tortuosity in Nanostructured Mesoporous Silica Powder and Nanocomposite Membranes

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Transport in Porous Media Pub Date : 2024-06-14 DOI:10.1007/s11242-024-02095-8
Dessie Belay Emrie
{"title":"Electrical Tortuosity in Nanostructured Mesoporous Silica Powder and Nanocomposite Membranes","authors":"Dessie Belay Emrie","doi":"10.1007/s11242-024-02095-8","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer silica nanocomposites are advanced materials with unique properties combining the advantages of an inorganic nanofiller and the organic polymer matrix, which attracted considerable interest for applications in energy conversion and storage, drug delivery, environmental remediation, and many more. However, the dispersion of the nanofiller in the polymer matrix leads to complexified nanocomposite materials whose barrier properties are altered resulting in a tortuous pathway for the transport of current, matter, and velocity. The tortuosity of these nanocomposite materials, which depends on their porosity organization, is a parameter usually challenging to quantify accurately. Therefore, the objective of this study was to develop a method to quantify the electrical tortuosity and to develop a theoretical model to accurately predict electrical tortuosity in these in-house prepared silica powder and nanocomposite membrane materials at different porosity ranges. The SBA-15 silica powder and nanocomposite membranes’ conductivity was measured with the help of impedance spectroscopy in a 1 M sodium chloride electrolyte solution from which the electrical tortuosity is quantified. The calculated tortuosity of SBA-15 silica powder was found to be well correlated to the entire range of its porosity. The plots of the tortuosity versus porosity from the Maxwell and the modified Maxwell models showed a well-fitted curve to the entire range of porosity. These theoretical models will help to give a perfect prediction of the electrical tortuosity of materials from porosity measurements, which would be a vital technique to characterize materials used in electrochemical devices and battery technology.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 9","pages":"1811 - 1824"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02095-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer silica nanocomposites are advanced materials with unique properties combining the advantages of an inorganic nanofiller and the organic polymer matrix, which attracted considerable interest for applications in energy conversion and storage, drug delivery, environmental remediation, and many more. However, the dispersion of the nanofiller in the polymer matrix leads to complexified nanocomposite materials whose barrier properties are altered resulting in a tortuous pathway for the transport of current, matter, and velocity. The tortuosity of these nanocomposite materials, which depends on their porosity organization, is a parameter usually challenging to quantify accurately. Therefore, the objective of this study was to develop a method to quantify the electrical tortuosity and to develop a theoretical model to accurately predict electrical tortuosity in these in-house prepared silica powder and nanocomposite membrane materials at different porosity ranges. The SBA-15 silica powder and nanocomposite membranes’ conductivity was measured with the help of impedance spectroscopy in a 1 M sodium chloride electrolyte solution from which the electrical tortuosity is quantified. The calculated tortuosity of SBA-15 silica powder was found to be well correlated to the entire range of its porosity. The plots of the tortuosity versus porosity from the Maxwell and the modified Maxwell models showed a well-fitted curve to the entire range of porosity. These theoretical models will help to give a perfect prediction of the electrical tortuosity of materials from porosity measurements, which would be a vital technique to characterize materials used in electrochemical devices and battery technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米结构介孔二氧化硅粉末和纳米复合膜中的电曲度
聚合物二氧化硅纳米复合材料是一种先进的材料,具有独特的性能,结合了无机纳米填料和有机聚合物基体的优点,在能源转换和储存、药物输送、环境修复等领域的应用引起了广泛的兴趣。然而,纳米填料在聚合物基体中的分散会导致纳米复合材料的复杂化,其阻隔特性会发生改变,从而导致电流、物质和速度的传输路径变得曲折。这些纳米复合材料的迂回度取决于其孔隙度组织,通常是一个难以准确量化的参数。因此,本研究的目的是开发一种量化电迂回度的方法,并建立一个理论模型,以准确预测内部制备的硅粉和纳米复合膜材料在不同孔隙率范围内的电迂回度。在 1 M 氯化钠电解质溶液中,利用阻抗光谱法测量了 SBA-15 硅粉和纳米复合膜的电导率,并从中量化了电扭曲度。结果发现,计算得出的 SBA-15 硅粉曲折度与其整个孔隙率范围密切相关。根据麦克斯韦模型和修正的麦克斯韦模型绘制的曲折度与孔隙率曲线图显示,整个孔隙率范围的曲线拟合良好。这些理论模型将有助于根据孔隙率测量结果完美预测材料的电扭曲度,这将是表征电化学装置和电池技术中所用材料的重要技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
期刊最新文献
On the Viscous Crossflow During the Foam Displacement in Two-Layered Porous Media Python Workflow for Segmenting Multiphase Flow in Porous Rocks An Improved Scheme for the Finite Difference Approximation of the Advective Term in the Heat or Solute Transport Equations Analytical Solution for Darcy Flow in a Bounded Fracture-Matrix Domain Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow–Porous Medium System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1