Adaptive fuzzy disturbance suppression for constrained nonlinear systems under faulty condition

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-06-14 DOI:10.1049/cth2.12683
Meiying Yang, Li Tang
{"title":"Adaptive fuzzy disturbance suppression for constrained nonlinear systems under faulty condition","authors":"Meiying Yang,&nbsp;Li Tang","doi":"10.1049/cth2.12683","DOIUrl":null,"url":null,"abstract":"<p>For a class of full-states constraints nonlinear system with actuator failure, an adaptive fuzzy disturbance observer tracking design is carried out by using Lyapunov function and the dynamic surface method. The integral explosion problem is avoided by using the dynamic surface design method. Because the disturbance of the system is unknown, a nonlinear fuzzy disturbance observer is designed to estimate the unknown disturbance. And the unknown nonlinear function is approximated fuzzy logic systems. Based on the Lyapunov function method and backstepping approach, the stability of considered systems are analysed. And the proposed method can guarantee that all the signals in the closed-loop system are bounded and the system output can track the desired signal to the small neighbourhood range. In addition, the fuzzy disturbance observer can estimate the unknown disturbance state well. Finally, several sets of simulation examples are given and compared with other method, and the experimental results are quantitatively analysed. Then, the robustness and superiority of the proposed control scheme are verified and demonstrated.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 12","pages":"1517-1528"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12683","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12683","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For a class of full-states constraints nonlinear system with actuator failure, an adaptive fuzzy disturbance observer tracking design is carried out by using Lyapunov function and the dynamic surface method. The integral explosion problem is avoided by using the dynamic surface design method. Because the disturbance of the system is unknown, a nonlinear fuzzy disturbance observer is designed to estimate the unknown disturbance. And the unknown nonlinear function is approximated fuzzy logic systems. Based on the Lyapunov function method and backstepping approach, the stability of considered systems are analysed. And the proposed method can guarantee that all the signals in the closed-loop system are bounded and the system output can track the desired signal to the small neighbourhood range. In addition, the fuzzy disturbance observer can estimate the unknown disturbance state well. Finally, several sets of simulation examples are given and compared with other method, and the experimental results are quantitatively analysed. Then, the robustness and superiority of the proposed control scheme are verified and demonstrated.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
故障条件下约束非线性系统的自适应模糊干扰抑制
针对一类具有致动器失效的全状态约束非线性系统,利用 Lyapunov 函数和动态曲面法进行了自适应模糊扰动观测器跟踪设计。利用动态曲面设计方法避免了积分爆炸问题。由于系统的扰动是未知的,因此设计了一个非线性模糊扰动观测器来估计未知扰动。未知非线性函数是近似模糊逻辑系统。基于 Lyapunov 函数法和反步法,分析了所考虑系统的稳定性。所提出的方法能保证闭环系统中的所有信号都是有界的,系统输出能在小邻域范围内跟踪所需的信号。此外,模糊干扰观测器能很好地估计未知干扰状态。最后,给出了几组仿真实例,并与其他方法进行了比较,对实验结果进行了定量分析。然后,验证并证明了所提控制方案的鲁棒性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Precise orientation control of gimbals with parametric variations using model reference adaptive controller Neuro-adaptive prescribed performance control for spacecraft rendezvous based on the fully-actuated system approach Adaptive polynomial Kalman filter for nonlinear state estimation in modified AR time series with fixed coefficients Observer-based adaptive control of vehicle platoon with uncertainty and input constraints An improved two-degree-of-freedom ADRC for asynchronous motor vector system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1