Utilizing machine learning for early screening of thyroid nodules: a dual-center cross-sectional study in China

Shuwei Weng, Chen Ding, Die Hu, Jin Chen, Yang Liu, Wenwu Liu, Yang Chen, Xin Guo, Chenghui Cao, Yuting Yi, Yanyi Yang, Daoquan Peng
{"title":"Utilizing machine learning for early screening of thyroid nodules: a dual-center cross-sectional study in China","authors":"Shuwei Weng, Chen Ding, Die Hu, Jin Chen, Yang Liu, Wenwu Liu, Yang Chen, Xin Guo, Chenghui Cao, Yuting Yi, Yanyi Yang, Daoquan Peng","doi":"10.3389/fendo.2024.1385167","DOIUrl":null,"url":null,"abstract":"Thyroid nodules, increasingly prevalent globally, pose a risk of malignant transformation. Early screening is crucial for management, yet current models focus mainly on ultrasound features. This study explores machine learning for screening using demographic and biochemical indicators.Analyzing data from 6,102 individuals and 61 variables, we identified 17 key variables to construct models using six machine learning classifiers: Logistic Regression, SVM, Multilayer Perceptron, Random Forest, XGBoost, and LightGBM. Performance was evaluated by accuracy, precision, recall, F1 score, specificity, kappa statistic, and AUC, with internal and external validations assessing generalizability. Shapley values determined feature importance, and Decision Curve Analysis evaluated clinical benefits.Random Forest showed the highest internal validation accuracy (78.3%) and AUC (89.1%). LightGBM demonstrated robust external validation performance. Key factors included age, gender, and urinary iodine levels, with significant clinical benefits at various thresholds. Clinical benefits were observed across various risk thresholds, particularly in ensemble models.Machine learning, particularly ensemble methods, accurately predicts thyroid nodule presence using demographic and biochemical data. This cost-effective strategy offers valuable insights for thyroid health management, aiding in early detection and potentially improving clinical outcomes. These findings enhance our understanding of the key predictors of thyroid nodules and underscore the potential of machine learning in public health applications for early disease screening and prevention.","PeriodicalId":505784,"journal":{"name":"Frontiers in Endocrinology","volume":"27 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fendo.2024.1385167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thyroid nodules, increasingly prevalent globally, pose a risk of malignant transformation. Early screening is crucial for management, yet current models focus mainly on ultrasound features. This study explores machine learning for screening using demographic and biochemical indicators.Analyzing data from 6,102 individuals and 61 variables, we identified 17 key variables to construct models using six machine learning classifiers: Logistic Regression, SVM, Multilayer Perceptron, Random Forest, XGBoost, and LightGBM. Performance was evaluated by accuracy, precision, recall, F1 score, specificity, kappa statistic, and AUC, with internal and external validations assessing generalizability. Shapley values determined feature importance, and Decision Curve Analysis evaluated clinical benefits.Random Forest showed the highest internal validation accuracy (78.3%) and AUC (89.1%). LightGBM demonstrated robust external validation performance. Key factors included age, gender, and urinary iodine levels, with significant clinical benefits at various thresholds. Clinical benefits were observed across various risk thresholds, particularly in ensemble models.Machine learning, particularly ensemble methods, accurately predicts thyroid nodule presence using demographic and biochemical data. This cost-effective strategy offers valuable insights for thyroid health management, aiding in early detection and potentially improving clinical outcomes. These findings enhance our understanding of the key predictors of thyroid nodules and underscore the potential of machine learning in public health applications for early disease screening and prevention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习进行甲状腺结节早期筛查:一项在中国开展的双中心横断面研究
甲状腺结节在全球越来越普遍,有恶变的风险。早期筛查对治疗至关重要,但目前的模型主要侧重于超声特征。本研究利用人口统计学和生化指标探索了机器学习筛查。通过分析来自 6102 个个体和 61 个变量的数据,我们确定了 17 个关键变量,并利用六种机器学习分类器构建了模型:我们使用六种机器学习分类器:逻辑回归、SVM、多层感知器、随机森林、XGBoost 和 LightGBM,建立了 17 个关键变量模型。通过准确度、精确度、召回率、F1 分数、特异性、卡帕统计量和 AUC 来评估性能,并通过内部和外部验证来评估通用性。随机森林的内部验证准确率(78.3%)和AUC(89.1%)最高。LightGBM显示出了强大的外部验证性能。关键因素包括年龄、性别和尿碘水平,在不同的阈值下都有显著的临床效益。在各种风险阈值下都能观察到临床获益,尤其是在集合模型中。机器学习,尤其是集合方法,能利用人口和生化数据准确预测甲状腺结节的存在。这种具有成本效益的策略为甲状腺健康管理提供了宝贵的见解,有助于早期检测并可能改善临床结果。这些发现加深了我们对甲状腺结节关键预测因素的理解,并强调了机器学习在公共卫生应用中用于早期疾病筛查和预防的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
T1 mapping combined with arterial spin labeling MRI to identify renal injury in patients with liver cirrhosis Adjunctive benefits of low-frequency transcutaneous electrical nerve stimulation for obesity frequent chronic conditions: a systematic review Cadmium activation of wild-type and constitutively active estrogen receptor alpha Editorial: Preventing cardiovascular complications of type 2 diabetes The causal relationship between antihypertensive drugs and depression: a Mendelian randomization study of drug targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1