Kinetic and thermodynamic approach to precisely solve the unsteady Rayleigh flow problem of a rarefied homogeneous charged gas under external force influence

IF 4.3 3区 工程技术 Q1 MECHANICS Journal of Non-Equilibrium Thermodynamics Pub Date : 2024-06-13 DOI:10.1515/jnet-2024-0022
Taha Zakaraia Abdel Wahid, Z. M. Alaofi
{"title":"Kinetic and thermodynamic approach to precisely solve the unsteady Rayleigh flow problem of a rarefied homogeneous charged gas under external force influence","authors":"Taha Zakaraia Abdel Wahid, Z. M. Alaofi","doi":"10.1515/jnet-2024-0022","DOIUrl":null,"url":null,"abstract":"Abstract An extension and further development of our previous article [J. Non-equilibrium Thermodyne. 37 (2012), 119–141] is presented. We study the irreversible non-equilibrium thermodynamics (INT) properties of the exact solution to the dilute homogeneously charged gas problem with unsteady Rayleigh flow. In contrast to previous research, the charged gas flows under the influence of an external force, the flat plate oscillates, and the displacement current term is considered, leading to significant advancements in understanding natural plasma dynamics. We are solving the Boltzmann kinetic equation (BKE) Krook model supplemented by Maxwell’s equations. We used a travelling wave and moments method with an electron velocity distribution function (EVDF). To the best of our knowledge, as three new scientific achievements, we introduced a new mathematical model for calculating the thermodynamic forces, kinetic coefficients, and fluxes variables, Equations (28–40) and (50–54). Second, we determined, with reasonable accuracy, the thermodynamic equilibrium time of electrons, t equ = 26.7955, under an external force. We clarify the difference between equilibrium EVDF and perturbed EVDF and take advantage of BKE to account for non-equilibrium thermodynamic principles. For diamagnetic and paramagnetic plasmas, the extended Gibbs equation predicts ratios between various contributions to the internal energy change (IEC) is presented. A standard laboratory argon plasma model is used to apply the results.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0022","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract An extension and further development of our previous article [J. Non-equilibrium Thermodyne. 37 (2012), 119–141] is presented. We study the irreversible non-equilibrium thermodynamics (INT) properties of the exact solution to the dilute homogeneously charged gas problem with unsteady Rayleigh flow. In contrast to previous research, the charged gas flows under the influence of an external force, the flat plate oscillates, and the displacement current term is considered, leading to significant advancements in understanding natural plasma dynamics. We are solving the Boltzmann kinetic equation (BKE) Krook model supplemented by Maxwell’s equations. We used a travelling wave and moments method with an electron velocity distribution function (EVDF). To the best of our knowledge, as three new scientific achievements, we introduced a new mathematical model for calculating the thermodynamic forces, kinetic coefficients, and fluxes variables, Equations (28–40) and (50–54). Second, we determined, with reasonable accuracy, the thermodynamic equilibrium time of electrons, t equ = 26.7955, under an external force. We clarify the difference between equilibrium EVDF and perturbed EVDF and take advantage of BKE to account for non-equilibrium thermodynamic principles. For diamagnetic and paramagnetic plasmas, the extended Gibbs equation predicts ratios between various contributions to the internal energy change (IEC) is presented. A standard laboratory argon plasma model is used to apply the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用动力学和热力学方法精确求解外力影响下稀薄均质带电气体的非稳态瑞利流问题
摘要 本文是我们之前文章[J. Non-equilibrium Thermodyne. 37 (2012), 119-141] 的延伸和进一步发展。我们研究了稀释均质带电气体问题非稳态瑞利流精确解的不可逆非平衡热力学(INT)特性。与以往研究不同的是,带电气体在外力作用下流动,平板振荡,并考虑了位移电流项,从而在理解自然等离子体动力学方面取得了重大进展。我们正在求解以麦克斯韦方程为补充的玻尔兹曼动力学方程(BKE)克罗克模型。我们使用了带有电子速度分布函数(EVDF)的行波和矩法。据我们所知,作为三项新的科学成果,我们引入了一个新的数学模型,用于计算热动力、动力学系数和通量变量,即公式 (28-40) 和 (50-54)。其次,我们以合理的精度确定了电子在外力作用下的热力学平衡时间 t equ = 26.7955。我们澄清了平衡 EVDF 和扰动 EVDF 的区别,并利用 BKE 解释了非平衡热力学原理。对于二磁和顺磁等离子体,扩展吉布斯方程预测了内能变化(IEC)各种贡献之间的比率。标准实验室氩等离子体模型被用来应用这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
期刊最新文献
Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit Investigation of the operating characteristics of diesel engines with chromium oxide (Cr2O3) nanoparticles dispersed in Mesua ferrea biodiesel: an experimental and predictive approach using ANNs and RSM Analytical solutions for nonequilibrium bioheat transfer in tumor during magnetic nanoparticles hyperthermia Composite liquids under high-power heating: superheat of water in micro-explosion of water-in-fuel droplets Application of a three-laser optical digital interferometry in a thermogravitational analysis for binary and ternary mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1