Prediction of free chloride concentration in fly ash concrete by machine learning methods SVR, MLP and CNN

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-13 DOI:10.1680/jmacr.23.00293
Yurong Zhang, Tingfeng Zhu, Weilong Yu, Chuanqing Fu, Xingjian Liu, Lin Wan-Wendner
{"title":"Prediction of free chloride concentration in fly ash concrete by machine learning methods SVR, MLP and CNN","authors":"Yurong Zhang, Tingfeng Zhu, Weilong Yu, Chuanqing Fu, Xingjian Liu, Lin Wan-Wendner","doi":"10.1680/jmacr.23.00293","DOIUrl":null,"url":null,"abstract":"Free chloride concentration distribution is important for assessing the corrosion risk of steel bars in reinforced concrete structures under chloride environment. In this study, a group of 3150 free chloride concentration data sets were obtained. Afterwards, three machine learning methods, including Support Vector Regression (SVR), Multilayer Perceptron (MLP) and One-Dimensional Convolutional Neural Network (1D-CNN) were adopted to construct models to predict chloride concentration distribution. Results show that 1D-CNN and MLP models are better at predicting the chloride concentration in fly ash concrete, whereas the prediction capability of SVR is relatively poor. Moreover, free chloride concentration prediction based on unmeasured parameters was conducted. Results show that the 1D-CNN and MLP models both have high prediction abilities, i.e., predicted results are consistent with experimental measurements, performing generally better than the time-varying model constructed based on Fick's second law. When the free chloride concentrations were higher than 0.1%, the SVR model had a better prediction effect, but had an unsatisfactory result and differed significantly from the actual chloride concentration when at a lower concentration. Overall, the 1D-CNN model performs the best in predicting free chloride concentrations of concrete at different penetration depths, exposure time and with different FA content.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"77 5","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00293","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Free chloride concentration distribution is important for assessing the corrosion risk of steel bars in reinforced concrete structures under chloride environment. In this study, a group of 3150 free chloride concentration data sets were obtained. Afterwards, three machine learning methods, including Support Vector Regression (SVR), Multilayer Perceptron (MLP) and One-Dimensional Convolutional Neural Network (1D-CNN) were adopted to construct models to predict chloride concentration distribution. Results show that 1D-CNN and MLP models are better at predicting the chloride concentration in fly ash concrete, whereas the prediction capability of SVR is relatively poor. Moreover, free chloride concentration prediction based on unmeasured parameters was conducted. Results show that the 1D-CNN and MLP models both have high prediction abilities, i.e., predicted results are consistent with experimental measurements, performing generally better than the time-varying model constructed based on Fick's second law. When the free chloride concentrations were higher than 0.1%, the SVR model had a better prediction effect, but had an unsatisfactory result and differed significantly from the actual chloride concentration when at a lower concentration. Overall, the 1D-CNN model performs the best in predicting free chloride concentrations of concrete at different penetration depths, exposure time and with different FA content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习方法 SVR、MLP 和 CNN 预测粉煤灰混凝土中的游离氯浓度
游离氯化物浓度分布对于评估氯化物环境下钢筋混凝土结构中钢筋的腐蚀风险非常重要。本研究获得了一组 3150 个游离氯化物浓度数据集。然后,采用支持向量回归(SVR)、多层感知器(MLP)和一维卷积神经网络(1D-CNN)等三种机器学习方法构建模型,预测氯化物浓度分布。结果表明,1D-CNN 和 MLP 模型对粉煤灰混凝土中氯离子浓度的预测效果较好,而 SVR 的预测能力相对较差。此外,还进行了基于未测量参数的游离氯化物浓度预测。结果表明,1D-CNN 和 MLP 模型都具有较高的预测能力,即预测结果与实验测量结果一致,总体上优于基于菲克第二定律构建的时变模型。当游离氯浓度高于 0.1% 时,SVR 模型的预测效果较好,但在较低浓度时,其结果并不理想,与实际氯浓度相差很大。总的来说,1D-CNN 模型在预测不同渗透深度、暴露时间和不同 FA 含量下混凝土的游离氯化物浓度方面表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Twisted Graphene Nanoribbons for Breakthroughs in Energy Storage, Bioelectronics and Chiroptics. Engineering Tick Evasins as Multitarget Chemokine Inhibitors─A Biomimetic Approach To Tackling the Complexity of the Immune System Biochemical Interface Engineering for Transistor-Based Point-of-Care Diagnostics Interface Energy Tuning in Lanthanide Upconversion Nanoparticles through a Multilayer Growth Strategy A Perspective on Ultrafast Excited-State Dynamics: From Molecular Aggregates to Conjugated Polymer Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1