An interpretable spacecraft flywheel system health status assessment method under perturbation

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Science and Technology Pub Date : 2024-06-13 DOI:10.1088/1361-6501/ad57de
Zongjun Zhang, Wei He, Hongyu Li, Ning Ma, Guohui Zhou
{"title":"An interpretable spacecraft flywheel system health status assessment method under perturbation","authors":"Zongjun Zhang, Wei He, Hongyu Li, Ning Ma, Guohui Zhou","doi":"10.1088/1361-6501/ad57de","DOIUrl":null,"url":null,"abstract":"\n Health status assessment is an important measure for maintaining the safety of spacecraft flywheel systems. The influence of noise, sensor quality, and other disturbance factors can lead to a decrease in the reliability of the collected information. This can affect the model accuracy. Moreover, a loss of belief in the model is frequently caused by the opaque nature of the procedure and the incomprehensibility of the outcomes, particularly in fields such as aerospace. It is urgent to maintain the interpretability of the model and successfully identify the unreliability of the observed data. Therefore, this paper proposes a spacecraft flywheel system health status assessment method under perturbation based on interpretable belief rule base with attribute reliability (IBRB-r). First, the attribute reliability is calculated based on the average distance method, and a new fusion method of attribute reliability is proposed to reduce the interference of unreliable information. Then, a new interpretable constraint strategy is proposed to improve the rationality and interpretability of the parameters. Finally, the proposed method is validated by a case study of the health status assessment of a spacecraft flywheel system. Experiments show that the IBRB-r maintains high accuracy and interpretability under unreliable observation data.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad57de","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Health status assessment is an important measure for maintaining the safety of spacecraft flywheel systems. The influence of noise, sensor quality, and other disturbance factors can lead to a decrease in the reliability of the collected information. This can affect the model accuracy. Moreover, a loss of belief in the model is frequently caused by the opaque nature of the procedure and the incomprehensibility of the outcomes, particularly in fields such as aerospace. It is urgent to maintain the interpretability of the model and successfully identify the unreliability of the observed data. Therefore, this paper proposes a spacecraft flywheel system health status assessment method under perturbation based on interpretable belief rule base with attribute reliability (IBRB-r). First, the attribute reliability is calculated based on the average distance method, and a new fusion method of attribute reliability is proposed to reduce the interference of unreliable information. Then, a new interpretable constraint strategy is proposed to improve the rationality and interpretability of the parameters. Finally, the proposed method is validated by a case study of the health status assessment of a spacecraft flywheel system. Experiments show that the IBRB-r maintains high accuracy and interpretability under unreliable observation data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扰动下可解释的航天器飞轮系统健康状况评估方法
健康状况评估是维护航天器飞轮系统安全的一项重要措施。噪声、传感器质量和其他干扰因素的影响会导致所收集信息的可靠性降低。这会影响模型的准确性。此外,程序的不透明性和结果的不可理解性经常会导致对模型丧失信心,尤其是在航空航天等领域。保持模型的可解释性并成功识别观测数据的不可靠性迫在眉睫。因此,本文提出了一种基于属性可靠性可解释信念规则库(IBRB-r)的扰动下航天器飞轮系统健康状态评估方法。首先,基于平均距离法计算属性可靠性,并提出一种新的属性可靠性融合方法,以减少不可靠信息的干扰。然后,提出了一种新的可解释约束策略,以提高参数的合理性和可解释性。最后,通过对航天器飞轮系统健康状况评估的案例研究验证了所提出的方法。实验表明,IBRB-r 在观测数据不可靠的情况下仍能保持较高的准确性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
期刊最新文献
Morphological characterization of concave particle based on convex decomposition TSMDA: intelligent fault diagnosis of rolling bearing with two stage multi-source domain adaptation Precise orbit determination of integrated BDS-3 and LEO satellites with ambiguity fixing under regional ground stations High-accuracy and lightweight weld surface defect detector based on graph convolution decoupling head Gap Measurement Method Based on Projection Lines and Convex Analysis of 3D Points Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1