Manufacturing and behavioral analysis of functionally graded material fabricated via wire arc additive manufacturing

D. Veeman, M. Subramaniyan, M. A. Browne, Tharun Kumar Muthu Kumar
{"title":"Manufacturing and behavioral analysis of functionally graded material fabricated via wire arc additive manufacturing","authors":"D. Veeman, M. Subramaniyan, M. A. Browne, Tharun Kumar Muthu Kumar","doi":"10.1177/14644207241262183","DOIUrl":null,"url":null,"abstract":"This study investigates the application of wire arc additive manufacturing (WAAM) for fabricating functionally graded materials (FGMs), focusing on FGM walls (SS 347/316L) using gas metal arc welding. FGMs offer advantages for parts requiring dissimilar welding, providing seamless material transitions without compromising properties. Targeting critical sectors like marine, aerospace, and pressure vessels, the fabricated FGM wall demonstrates superior characteristics, including enhanced tensile strength and microstructural properties compared to traditional wrought alloys. The FGM exhibits a strength of 3.47% greater than that of the stronger material (SS 347), with a simulated strength of 539.9 MPa. The outcomes of the tensile test show a simulated error percentage of less than 1% (0.534%). The study also highlights the potential of WAAM in producing high-performance materials for demanding applications such as aircraft engines, nuclear reactors, and oil and gas pipelines, emphasizing its significance in industrial settings.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241262183","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of wire arc additive manufacturing (WAAM) for fabricating functionally graded materials (FGMs), focusing on FGM walls (SS 347/316L) using gas metal arc welding. FGMs offer advantages for parts requiring dissimilar welding, providing seamless material transitions without compromising properties. Targeting critical sectors like marine, aerospace, and pressure vessels, the fabricated FGM wall demonstrates superior characteristics, including enhanced tensile strength and microstructural properties compared to traditional wrought alloys. The FGM exhibits a strength of 3.47% greater than that of the stronger material (SS 347), with a simulated strength of 539.9 MPa. The outcomes of the tensile test show a simulated error percentage of less than 1% (0.534%). The study also highlights the potential of WAAM in producing high-performance materials for demanding applications such as aircraft engines, nuclear reactors, and oil and gas pipelines, emphasizing its significance in industrial settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过线弧快速成型技术制造的功能分级材料的制造和行为分析
本研究调查了线弧快速成型制造(WAAM)在制造功能分级材料(FGMs)中的应用,重点是使用气体金属弧焊制造 FGM 壁(SS 347/316L)。FGM 为需要异种焊接的零件提供了优势,可在不影响性能的情况下实现材料的无缝过渡。针对船舶、航空航天和压力容器等关键领域,制造的 FGM 壁显示出优越的特性,包括与传统锻造合金相比更高的抗拉强度和微观结构特性。FGM 的强度比强度更高的材料(SS 347)高出 3.47%,模拟强度为 539.9 兆帕。拉伸试验结果显示,模拟误差率小于 1%(0.534%)。这项研究还强调了 WAAM 在生产高性能材料方面的潜力,这些材料可用于飞机发动机、核反应堆、石油和天然气管道等要求苛刻的应用领域,从而突出了 WAAM 在工业领域的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
8.30%
发文量
166
审稿时长
3 months
期刊介绍: The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers. "The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Quantification of delamination resistance data of FRP composites and its limits Thick-wire GMAW for fusion welding of high-strength steels Evaluation of the performance enhancement of asphalt concrete via graphene oxide incorporation: A multi-test approach Recent advancements in self-healing materials and their application in coating industry Investigations on microstructural, mechanical, and tribological properties of Al-Cu-Ni alloy in cast, heat-treated, and strain-softened conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1