Nanostructured Cu3P–CoP Cathodes with 3D Urchin Morphology for Hybrid Supercapacitors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-13 DOI:10.1021/acsanm.4c01807
Roshini Arulraj, Amala George and Manab Kundu*, 
{"title":"Nanostructured Cu3P–CoP Cathodes with 3D Urchin Morphology for Hybrid Supercapacitors","authors":"Roshini Arulraj,&nbsp;Amala George and Manab Kundu*,&nbsp;","doi":"10.1021/acsanm.4c01807","DOIUrl":null,"url":null,"abstract":"<p >A highly functioning copper cobalt-based ternary phosphide (CCP) cathode was engineered from a copper cobalt carbonate hydroxide (CCH) material via a gas–solid thermal route, resulting in a 3D spatial morphology with a hierarchical architecture and porosity. Preliminary electrochemical testing revealed the superiority of the CCP cathode with a specific capacity value of 2392 C g<sup>–1</sup> at 10 A g<sup>–1</sup> and a capacity retention of 94.4% over 5000 cycles at 40 A g<sup>–1</sup>. The morphological advantages of CCP with its 3D hierarchical architecture, highly porous network, and numerous nanospikes with sharp edges and surface defects offer tremendous active sites and ion transport channels for better charge storage performance. The CCP//activated carbon electrode (ACE) hybrid supercapacitor (HSC) device delivered a capacity value of 284.5 C g<sup>–1</sup> at 10 A g<sup>–1</sup> and a 92.3% retention in capacity for 10 000 cycles at a high current density of 30 A g<sup>–1</sup>. Furthermore, the fabricated device provided high energy and power density values of 129.15 Wh kg<sup>–1</sup> and 66.4 kW kg<sup>–1</sup>, respectively, and powered a red LED for 1 min. Thus, this work efficiently provides knowledge on the development of a Cu<sub>3</sub>P–CoP electrode material from optimizing morphological features and synthetic routes, which leads to achieving superior functioning cathode materials for hybrid supercapacitors in the current energy storage era.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c01807","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A highly functioning copper cobalt-based ternary phosphide (CCP) cathode was engineered from a copper cobalt carbonate hydroxide (CCH) material via a gas–solid thermal route, resulting in a 3D spatial morphology with a hierarchical architecture and porosity. Preliminary electrochemical testing revealed the superiority of the CCP cathode with a specific capacity value of 2392 C g–1 at 10 A g–1 and a capacity retention of 94.4% over 5000 cycles at 40 A g–1. The morphological advantages of CCP with its 3D hierarchical architecture, highly porous network, and numerous nanospikes with sharp edges and surface defects offer tremendous active sites and ion transport channels for better charge storage performance. The CCP//activated carbon electrode (ACE) hybrid supercapacitor (HSC) device delivered a capacity value of 284.5 C g–1 at 10 A g–1 and a 92.3% retention in capacity for 10 000 cycles at a high current density of 30 A g–1. Furthermore, the fabricated device provided high energy and power density values of 129.15 Wh kg–1 and 66.4 kW kg–1, respectively, and powered a red LED for 1 min. Thus, this work efficiently provides knowledge on the development of a Cu3P–CoP electrode material from optimizing morphological features and synthetic routes, which leads to achieving superior functioning cathode materials for hybrid supercapacitors in the current energy storage era.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于混合超级电容器的具有三维海胆形态的纳米结构 Cu3P-CoP 阴极
通过气固热途径,从碳酸铜钴氢氧化物(CCH)材料中设计出了一种高功能铜钴基三元磷化物(CCP)阴极,形成了具有分层结构和多孔性的三维空间形态。初步电化学测试表明,CCP 阴极性能优越,在 10 A g-1 条件下的比容量值为 2392 C g-1,在 40 A g-1 条件下循环 5000 次的容量保持率为 94.4%。CCP 的形态优势在于其三维分层结构、高多孔性网络以及大量具有锐利边缘和表面缺陷的纳米尖峰,这些优势为更好的电荷存储性能提供了巨大的活性位点和离子传输通道。CCP/ 活性碳电极(ACE)混合超级电容器(HSC)装置在 10 A g-1 电流下的容量值为 284.5 C g-1,在 30 A g-1 的高电流密度下循环 10 000 次的容量保持率为 92.3%。此外,所制造的装置还提供了高能量和功率密度值,分别为 129.15 Wh kg-1 和 66.4 kW kg-1,并可为红色 LED 供电 1 分钟。因此,这项工作从优化形态特征和合成路线入手,有效地提供了开发 Cu3P-CoP 电极材料的知识,从而在当前的储能时代为混合超级电容器实现功能卓越的阴极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1