Study on the Imaging Interference of a Vortex-Light-Modulated Gaussian Beam

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2024-06-13 DOI:10.3390/photonics11060557
Yanghe Liu, Yuanhe Tang, Jian Zhou, Cunxia Li, Ningju Hui, Yishan Zhang, Yanlong Wang
{"title":"Study on the Imaging Interference of a Vortex-Light-Modulated Gaussian Beam","authors":"Yanghe Liu, Yuanhe Tang, Jian Zhou, Cunxia Li, Ningju Hui, Yishan Zhang, Yanlong Wang","doi":"10.3390/photonics11060557","DOIUrl":null,"url":null,"abstract":"Combined with vortex light and airglow, some different physical phenomena are presented in this paper. Based on the ground-based airglow imaging interferometer (GBAII) made by our group, a liquid crystal on silicon (LCoS) device on one arm of a wide-angle Michelson interferometer (MI) of the GBAII is replaced by the reflector mirror to become the GBAII-LCoS system. LCoS generates a vortex phase to convert a Gaussian profile airglow into a vortex light pattern. After the Gaussian profile vortex light equation is obtained by combining the Gaussian profile airglow with the Laguerre–Gauss light, three different physical phenomena are obtained: the simulated Gaussian vortex airglow beam exhibits a hollow phenomenon with the introduction of the vortex phase, and as the topological charge (TC) l increases, the hollow range also increases; after adding the vortex factor, the interference fringe intensity can be ‘broadened’ with the optical path difference (OPD) and TC l increases, which match the field broadening technology for solid wide-angle MI; the ‘Four-point algorithm’ wind measurement for the upper atmosphere based on the vortex airglow is derived, which is different from the usual expressions. Some experimental results are presented: We obtained the influence modes of vortex light interference and a polarization angle from 335° to 245°. We also obtained a series of interference images that verifies the rotation of the vortex light, onto which is loaded a set of superimposed vortex phase images with TC l = 3 into LCoS in turn, and the interference image is rotated under the condition of the polarization angle of 245°. The controlled vortex interference image for different TC and grayscale values are completed.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11060557","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Combined with vortex light and airglow, some different physical phenomena are presented in this paper. Based on the ground-based airglow imaging interferometer (GBAII) made by our group, a liquid crystal on silicon (LCoS) device on one arm of a wide-angle Michelson interferometer (MI) of the GBAII is replaced by the reflector mirror to become the GBAII-LCoS system. LCoS generates a vortex phase to convert a Gaussian profile airglow into a vortex light pattern. After the Gaussian profile vortex light equation is obtained by combining the Gaussian profile airglow with the Laguerre–Gauss light, three different physical phenomena are obtained: the simulated Gaussian vortex airglow beam exhibits a hollow phenomenon with the introduction of the vortex phase, and as the topological charge (TC) l increases, the hollow range also increases; after adding the vortex factor, the interference fringe intensity can be ‘broadened’ with the optical path difference (OPD) and TC l increases, which match the field broadening technology for solid wide-angle MI; the ‘Four-point algorithm’ wind measurement for the upper atmosphere based on the vortex airglow is derived, which is different from the usual expressions. Some experimental results are presented: We obtained the influence modes of vortex light interference and a polarization angle from 335° to 245°. We also obtained a series of interference images that verifies the rotation of the vortex light, onto which is loaded a set of superimposed vortex phase images with TC l = 3 into LCoS in turn, and the interference image is rotated under the condition of the polarization angle of 245°. The controlled vortex interference image for different TC and grayscale values are completed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涡旋光调制高斯光束的成像干扰研究
结合涡旋光和气辉,本文介绍了一些不同的物理现象。在本课题组制造的地基气辉成像干涉仪(GBAII)的基础上,用反射镜取代了GBAII广角迈克尔逊干涉仪(MI)单臂上的硅基液晶(LCoS)器件,成为GBAII-LCoS系统。LCoS 产生涡相,将高斯轮廓气辉转换成涡状光斑。将高斯轮廓气流与拉盖尔-高斯光相结合,得到高斯轮廓涡流光方程后,就会产生三种不同的物理现象:模拟的高斯涡旋气辉光束在引入涡旋相后出现空心现象,随着拓扑电荷(TC)l 的增大,空心范围也随之增大;加入涡旋因子后,干涉条纹强度可随光程差(OPD)和 TC l 的增大而 "展宽",这与固体广角 MI 的场展宽技术相匹配;推导出基于涡旋气辉的高层大气 "四点算法 "测风方法,这与通常的表达式不同。介绍了一些实验结果:我们获得了涡旋光干涉的影响模式和从 335°到 245°的偏振角。我们还获得了一系列可验证涡旋光旋转的干涉图像,将一组 TC l = 3 的叠加涡旋相位图像依次载入 LCoS,在偏振角为 245°的条件下旋转干涉图像。不同 TC 值和灰度值的受控涡旋干涉图像就完成了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
High-Precision Temperature Control of Laser Crystals A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback Analyses of an Ultra-Wideband Absorber from UV-B to Middle-IR Utilizing a Square Nanopillar and a Square Hollow Embedded in a Square Cavity of the Top Layer of Multilayer Metamaterials Interferometrically Enhanced Intensity and Wavelength Modulation in Tunable Diode Laser Spectroscopy Efficient Depth Measurement for Live Control of Laser Drilling Process with Optical Coherence Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1