{"title":"Absorption, Desorption, and Mechanism Investigation of Dilute SO2 in the 1,3-Propanediol + Dimethyl Sulfoxide Binary System","authors":"Huifang Guo, Ying Zhang, Qiaomin Zhang, Jia Liu, Xiaohong Xie","doi":"10.1007/s10953-024-01390-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the absorption of sulfur dioxide (SO<sub>2</sub>) was investigated using the 1,3-propanediol (PDO) + dimethyl sulfoxide (DMSO) system, and the gas−liquid equilibrium (GLE) data were analyzed over a temperature range of 298.15–318.15 K (with a temperature gradient of 5 K) at a pressure of 123.15 kPa. By fitting the gas–liquid equilibrium data, it is observed that the process of absorption SO<sub>2</sub> conforms to Henry’s Law. The change in specific entropy, enthalpy, and Gibbs free energies of the SO<sub>2</sub> absorption process was as well calculated. In addition, the capture and regeneration properties of the PDO + DMSO system were investigated under atmospheric pressure, and the results of regeneration experiments demonstrated that 97.3% of SO<sub>2</sub> could be desorbed by heating and bubbling with N<sub>2</sub>. Furthermore, there was no notable reduction in absorption capacity of the absorbent solvents after multiple cycles. Finally, the FTIR spectra and computational information were noted to analyze the interaction between SO<sub>2</sub> and the system. As a result, an intermolecular hydrogen bonding association between PDO, DMSO, and SO<sub>2</sub> can be inferred.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-024-01390-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01390-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the absorption of sulfur dioxide (SO2) was investigated using the 1,3-propanediol (PDO) + dimethyl sulfoxide (DMSO) system, and the gas−liquid equilibrium (GLE) data were analyzed over a temperature range of 298.15–318.15 K (with a temperature gradient of 5 K) at a pressure of 123.15 kPa. By fitting the gas–liquid equilibrium data, it is observed that the process of absorption SO2 conforms to Henry’s Law. The change in specific entropy, enthalpy, and Gibbs free energies of the SO2 absorption process was as well calculated. In addition, the capture and regeneration properties of the PDO + DMSO system were investigated under atmospheric pressure, and the results of regeneration experiments demonstrated that 97.3% of SO2 could be desorbed by heating and bubbling with N2. Furthermore, there was no notable reduction in absorption capacity of the absorbent solvents after multiple cycles. Finally, the FTIR spectra and computational information were noted to analyze the interaction between SO2 and the system. As a result, an intermolecular hydrogen bonding association between PDO, DMSO, and SO2 can be inferred.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.