Synergistic Integration of Hydrogen Peroxide Powered Valveless Micropumps and Membraneless Fuel Cells: A Comprehensive Review

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-06-12 DOI:10.1002/admt.202302052
Jawayria Mujtaba, Aleksei Kuzin, Guoxiang Chen, Fenyang Zhu, Fedor S. Fedorov, Brij Mohan, Gaoshan Huang, Valeri Tolstoy, Vadim Kovalyuk, Gregory N. Goltsman, Dmitry A. Gorin, Albert G. Nasibulin, Shuangliang Zhao, Alexander A. Solovev, Yongfeng Mei
{"title":"Synergistic Integration of Hydrogen Peroxide Powered Valveless Micropumps and Membraneless Fuel Cells: A Comprehensive Review","authors":"Jawayria Mujtaba,&nbsp;Aleksei Kuzin,&nbsp;Guoxiang Chen,&nbsp;Fenyang Zhu,&nbsp;Fedor S. Fedorov,&nbsp;Brij Mohan,&nbsp;Gaoshan Huang,&nbsp;Valeri Tolstoy,&nbsp;Vadim Kovalyuk,&nbsp;Gregory N. Goltsman,&nbsp;Dmitry A. Gorin,&nbsp;Albert G. Nasibulin,&nbsp;Shuangliang Zhao,&nbsp;Alexander A. Solovev,&nbsp;Yongfeng Mei","doi":"10.1002/admt.202302052","DOIUrl":null,"url":null,"abstract":"<p>Catalytic valveless micropumps, and membraneless fuel cells are the class of devices that utilize the decomposition of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) into water and oxygen. Nonetheless, a significant obstacle that endures within the discipline pertains to the pragmatic open circuit potential (OCP) of hydrogen peroxide FCs (H<sub>2</sub>O<sub>2</sub> FCs), which fails to meet the theoretical OCP. Additionally, bubble formation significantly contributes to this disparity, as it disrupts the electrolyte's uniformity and interferes with reaction dynamics. In addition, issues such as catalyst degradation and poor kinetics can impact the overall cell efficiency. The development of high-performance H<sub>2</sub>O<sub>2</sub>-FCs necessitates the incorporation of selective electrocatalysts with a high surface area. However, porous micro-structures of the electrode impedes the transport of fuel and the removal of reaction byproducts, thereby hindering the attainment of technologically significant rates. To address these challenges, including bubble formation, the review highlights the potential of integrating electrokinetic and bubble-driven micropumps. An alternative approach involves the spatiotemporal separation of fuel and oxidizer through the use of laminar flow-based fuel cell (LFFC). The present review addresses multifaceted challenges of H<sub>2</sub>O<sub>2</sub>-powered FCs, and proposes integration of electrokinetic and bubble-driven micropumps, emphasizing the critical role of bubble management in improving H2O2 FC performance.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302052","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic valveless micropumps, and membraneless fuel cells are the class of devices that utilize the decomposition of hydrogen peroxide (H2O2) into water and oxygen. Nonetheless, a significant obstacle that endures within the discipline pertains to the pragmatic open circuit potential (OCP) of hydrogen peroxide FCs (H2O2 FCs), which fails to meet the theoretical OCP. Additionally, bubble formation significantly contributes to this disparity, as it disrupts the electrolyte's uniformity and interferes with reaction dynamics. In addition, issues such as catalyst degradation and poor kinetics can impact the overall cell efficiency. The development of high-performance H2O2-FCs necessitates the incorporation of selective electrocatalysts with a high surface area. However, porous micro-structures of the electrode impedes the transport of fuel and the removal of reaction byproducts, thereby hindering the attainment of technologically significant rates. To address these challenges, including bubble formation, the review highlights the potential of integrating electrokinetic and bubble-driven micropumps. An alternative approach involves the spatiotemporal separation of fuel and oxidizer through the use of laminar flow-based fuel cell (LFFC). The present review addresses multifaceted challenges of H2O2-powered FCs, and proposes integration of electrokinetic and bubble-driven micropumps, emphasizing the critical role of bubble management in improving H2O2 FC performance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过氧化氢动力无阀微泵与无膜燃料电池的协同整合:全面回顾
催化无阀微泵和无膜燃料电池是利用过氧化氢(H2O2)分解成水和氧气的一类设备。然而,过氧化氢燃料电池(H2O2 FCs)的实际开路电位(OCP)与理论开路电位不符,这是该学科的一个重大障碍。此外,气泡的形成也是造成这种差异的重要原因,因为它会破坏电解质的均匀性并干扰反应动力学。此外,催化剂降解和动力学不良等问题也会影响电池的整体效率。要开发高性能的 H2O2-FCs,就必须加入具有高比表面积的选择性电催化剂。然而,电极的多孔微结构阻碍了燃料的传输和反应副产物的清除,从而阻碍了实现具有重大技术意义的速率。为了应对这些挑战,包括气泡的形成,综述强调了整合电动和气泡驱动微泵的潜力。另一种方法是通过使用层流燃料电池(LFFC)实现燃料和氧化剂的时空分离。本综述探讨了以 H2O2 为动力的燃料电池所面临的多方面挑战,并提出了整合电动和气泡驱动微泵的建议,同时强调了气泡管理在提高 H2O2 燃料电池性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
Ambipolar Charge Injection and Bright Light Emission in Hybrid Oxide/Polymer Transistors Doped with Poly(9-Vinylcarbazole) Based Polyelectrolytes (Adv. Mater. Technol. 20/2024) 3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide (Adv. Mater. Technol. 20/2024) Hierarchical Composites Patterned via 3D Printed Cellular Fluidics (Adv. Mater. Technol. 20/2024) An Artificial Tactile Perception System with Spatio-Temporal Recognition Capability (Adv. Mater. Technol. 20/2024) Masthead: (Adv. Mater. Technol. 20/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1