Ning Wang, Yanzheng Chen, Yi Wei, Tingkai Chen, Hamid Reza Karimi
{"title":"UP-GAN: Channel-spatial attention-based progressive generative adversarial network for underwater image enhancement","authors":"Ning Wang, Yanzheng Chen, Yi Wei, Tingkai Chen, Hamid Reza Karimi","doi":"10.1002/rob.22378","DOIUrl":null,"url":null,"abstract":"<p>Focusing on severe color deviation, low brightness, and mixed noise caused by inherent scattering and light attenuation effects within underwater environments, an underwater-attention progressive generative adversarial network (UP-GAN) is innovated for underwater image enhancement (UIE). Salient contributions are as follows: (1) By elaborately devising an underwater background light estimation module via an underwater imaging model, the degradation mechanism can be sufficiently integrated to fuse prior information, which in turn saves computational burden on subsequent enhancement; (2) to suppress mixed noise and enhance foreground, simultaneously, an underwater dual-attention module is created to fertilize skip connection from channel and spatial aspects, thereby getting rid of noise amplification within the UIE; and (3) by systematically combining with spatial consistency, exposure control, color constancy, color relative dispersion losses, the entire UP-GAN framework is skillfully optimized by taking into account multidegradation factors. Comprehensive experiments conducted on the UIEB data set demonstrate the effectiveness and superiority of the proposed UP-GAN in terms of both subjective and objective aspects.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2597-2614"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22378","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Focusing on severe color deviation, low brightness, and mixed noise caused by inherent scattering and light attenuation effects within underwater environments, an underwater-attention progressive generative adversarial network (UP-GAN) is innovated for underwater image enhancement (UIE). Salient contributions are as follows: (1) By elaborately devising an underwater background light estimation module via an underwater imaging model, the degradation mechanism can be sufficiently integrated to fuse prior information, which in turn saves computational burden on subsequent enhancement; (2) to suppress mixed noise and enhance foreground, simultaneously, an underwater dual-attention module is created to fertilize skip connection from channel and spatial aspects, thereby getting rid of noise amplification within the UIE; and (3) by systematically combining with spatial consistency, exposure control, color constancy, color relative dispersion losses, the entire UP-GAN framework is skillfully optimized by taking into account multidegradation factors. Comprehensive experiments conducted on the UIEB data set demonstrate the effectiveness and superiority of the proposed UP-GAN in terms of both subjective and objective aspects.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.