Site-Selective Plasmonic and Photonic Modulation of Galvanic Replacement Reaction between Silver Nanoprisms and Aqueous Chloroplatinate Ions

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-12 DOI:10.1021/acsanm.4c01756
Sanje Mahasivam, Oshadie de Silva, Billy James Murdoch, Murali Sastry* and Vipul Bansal*, 
{"title":"Site-Selective Plasmonic and Photonic Modulation of Galvanic Replacement Reaction between Silver Nanoprisms and Aqueous Chloroplatinate Ions","authors":"Sanje Mahasivam,&nbsp;Oshadie de Silva,&nbsp;Billy James Murdoch,&nbsp;Murali Sastry* and Vipul Bansal*,&nbsp;","doi":"10.1021/acsanm.4c01756","DOIUrl":null,"url":null,"abstract":"<p >Hybrid systems encompassing plasmonic silver nanoprisms (AgPRs) and efficient catalysts such as platinum (Pt) offer tremendous opportunities in advancing plasmonic chemistry toward environmentally sustainable chemical transformations. Galvanic replacement reactions (GRRs) offer a simple and versatile route to preparing such hybrid systems. Syntheses of Ag–Pt hybrids via GRRs have previously employed various platinum salts that appear to face a thermodynamic barrier while reacting with a Ag crystal. This work carefully reinvestigates the reaction between AgPRs and [PtCl<sub>4</sub>]<sup>2–</sup> ions and identifies the important role that crystal facets and the instability of reactant molecules can play in overcoming the uphill barrier, thus allowing the reaction to proceed to at least some extent. To overcome the poor efficiency of this reaction, the work introduces a photodriven pathway that allows control over the synthesis of Pt-coated AgPRs. Photon energy plays a role in controlling the reaction kinetics and dictating the extent to which this reaction could be enhanced, while the plasmonic modulation allows spatial biasing of the reaction kinetics at specific subsites of the AgPRs. The findings presented here enrich our mechanistic understanding of plasmon-enhanced chemical reactions, thus, expediting opportunities to deploy plasmonic chemistry for industrially important chemical transformations.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c01756","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid systems encompassing plasmonic silver nanoprisms (AgPRs) and efficient catalysts such as platinum (Pt) offer tremendous opportunities in advancing plasmonic chemistry toward environmentally sustainable chemical transformations. Galvanic replacement reactions (GRRs) offer a simple and versatile route to preparing such hybrid systems. Syntheses of Ag–Pt hybrids via GRRs have previously employed various platinum salts that appear to face a thermodynamic barrier while reacting with a Ag crystal. This work carefully reinvestigates the reaction between AgPRs and [PtCl4]2– ions and identifies the important role that crystal facets and the instability of reactant molecules can play in overcoming the uphill barrier, thus allowing the reaction to proceed to at least some extent. To overcome the poor efficiency of this reaction, the work introduces a photodriven pathway that allows control over the synthesis of Pt-coated AgPRs. Photon energy plays a role in controlling the reaction kinetics and dictating the extent to which this reaction could be enhanced, while the plasmonic modulation allows spatial biasing of the reaction kinetics at specific subsites of the AgPRs. The findings presented here enrich our mechanistic understanding of plasmon-enhanced chemical reactions, thus, expediting opportunities to deploy plasmonic chemistry for industrially important chemical transformations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
银纳米棱镜与氯铂酸盐水溶液离子间电镀置换反应的位点选择性质子和光子调制
由等离子体纳米银(AgPRs)和铂(Pt)等高效催化剂组成的混合系统为推动等离子体化学实现环境可持续化学转化提供了巨大的机遇。电镀置换反应(GRRs)为制备此类混合系统提供了一条简单而多用途的途径。通过 GRRs 合成银铂混合物之前采用了各种铂盐,这些铂盐在与银晶体反应时似乎面临着热力学障碍。这项工作仔细重新研究了 AgPRs 与 [PtCl4]2- 离子之间的反应,并确定了晶面和反应物分子的不稳定性在克服上坡障碍方面的重要作用,从而使反应至少在一定程度上得以进行。为了克服该反应效率低下的问题,该研究引入了一种光驱动途径,从而可以控制铂镀层 AgPRs 的合成。光子能量在控制反应动力学和决定该反应的增强程度方面发挥了作用,而等离子体调制允许在 AgPRs 的特定子位点对反应动力学进行空间偏置。本文介绍的研究结果丰富了我们对等离子体增强化学反应的机理认识,从而加快了将等离子体化学应用于具有重要工业意义的化学转化的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Nitrogen-Doped Porous Carbon with Staged Nanopore Formation for Capacitors Nickel-Embedded Carbon Nanostructures as Noble Metal-Free Catalysts for the Hydrogen Evolution Reaction High-Performance Ammonia Gas Sensor Based on a Catalytic Ruthenium- Gated Field-Effect Transistor Strong Metal–Support Interactions in Cu(I)-Dark TiO2 Nanoscale Photocatalysts Prepared by Pulsed Laser Ablation for Hydrogen Evolution Reaction Quantum Dots as an Active Reservoir for Longer Effective Lifetimes in GaAs Bulk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1