Enhancing the seismic response of faults by using a deep learning-based method

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geophysical Prospecting Pub Date : 2024-06-12 DOI:10.1111/1365-2478.13549
Hao Yan, Zhe Yan, Jiankun Jing, Zheng Zhang, Haiying Li, Hanming Gu, Shaoyong Liu
{"title":"Enhancing the seismic response of faults by using a deep learning-based method","authors":"Hao Yan,&nbsp;Zhe Yan,&nbsp;Jiankun Jing,&nbsp;Zheng Zhang,&nbsp;Haiying Li,&nbsp;Hanming Gu,&nbsp;Shaoyong Liu","doi":"10.1111/1365-2478.13549","DOIUrl":null,"url":null,"abstract":"<p>The accuracy of fault interpretation is generally influenced by the quality of seismic images. Because of the blurring effect of the migration process, faults with small throws may not be clearly imaged in seismic images, which will impose limitations on the fault detection. To address this issue, we propose a deep learning-based method to enhance faults in poststack seismic images. We generate abundant training samples by convolving the three-dimensional point-spread functions with the noisy reflectivity models. The corresponding labels are synthesized using the one-dimensional seismic wavelet convolution method, simulating conditions with perfect illumination. To train the network for optimal performance, we investigate the impact of different loss functions. Ultimately, we employ a mixed loss function combining structural similarity index measure and gradient difference loss, since the gradient difference loss focuses more on geological edge information, and the structural similarity index measure possesses excellent image perceptual capability and optimization property. Results from one synthetic seismic image and three real seismic data demonstrate that our proposed method can effectively restore the sharpness of fault surfaces, particularly for faults with small displacements. Compared to the structural smoothing method, the network we trained achieves optimal fault enhancement. Furthermore, coherence-based fault images indicate that seismic images enhanced using our method can improve the accuracy of fault interpretation and yield more continuous fault maps.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13549","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of fault interpretation is generally influenced by the quality of seismic images. Because of the blurring effect of the migration process, faults with small throws may not be clearly imaged in seismic images, which will impose limitations on the fault detection. To address this issue, we propose a deep learning-based method to enhance faults in poststack seismic images. We generate abundant training samples by convolving the three-dimensional point-spread functions with the noisy reflectivity models. The corresponding labels are synthesized using the one-dimensional seismic wavelet convolution method, simulating conditions with perfect illumination. To train the network for optimal performance, we investigate the impact of different loss functions. Ultimately, we employ a mixed loss function combining structural similarity index measure and gradient difference loss, since the gradient difference loss focuses more on geological edge information, and the structural similarity index measure possesses excellent image perceptual capability and optimization property. Results from one synthetic seismic image and three real seismic data demonstrate that our proposed method can effectively restore the sharpness of fault surfaces, particularly for faults with small displacements. Compared to the structural smoothing method, the network we trained achieves optimal fault enhancement. Furthermore, coherence-based fault images indicate that seismic images enhanced using our method can improve the accuracy of fault interpretation and yield more continuous fault maps.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于深度学习的方法增强断层的地震响应
断层解释的准确性通常受地震图像质量的影响。由于迁移过程的模糊效应,投影较小的断层可能无法在地震图像中清晰成像,这将对断层探测造成限制。针对这一问题,我们提出了一种基于深度学习的方法来增强叠后地震图像中的断层。我们通过将三维点分布函数与噪声反射率模型进行卷积,生成丰富的训练样本。通过一维地震小波卷积方法,模拟完美光照条件,合成相应的标签。为了训练网络以获得最佳性能,我们研究了不同损失函数的影响。由于梯度差损失更注重地质边缘信息,而结构相似性指数测量具有出色的图像感知能力和优化特性,因此我们最终采用了结构相似性指数测量和梯度差损失相结合的混合损失函数。一个合成地震图像和三个真实地震数据的结果表明,我们提出的方法能有效地恢复断层面的锐利度,尤其是对于位移较小的断层。与结构平滑法相比,我们训练的网络实现了最佳的断层增强效果。此外,基于相干性的断层图像表明,使用我们的方法增强的地震图像可以提高断层解释的准确性,并得到更连续的断层图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
期刊最新文献
Issue Information Simultaneous inversion of four physical parameters of hydrate reservoir for high accuracy porosity estimation A mollifier approach to seismic data representation Analytic solutions for effective elastic moduli of isotropic solids containing oblate spheroid pores with critical porosity An efficient pseudoelastic pure P-mode wave equation and the implementation of the free surface boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1