Mohammed Ahmed Wahba, Rabab K. Khaled, Magdah Dawy, Maysa E. Moharam
{"title":"Enhanced optical and antimicrobial activities of mono Zn and bimetallic (Zn, Co), (Zn, Pd) ions modified MCM-41: structural and morphological investigation","authors":"Mohammed Ahmed Wahba, Rabab K. Khaled, Magdah Dawy, Maysa E. Moharam","doi":"10.1007/s10934-024-01634-4","DOIUrl":null,"url":null,"abstract":"<div><p>Mono and bimetallic modified MCM-41(Mobil Composition of Matter No. 41): Zn-MCM (ZM), Zn/Co-MCM41 (ZCM), and Zn/Pd-MCM-41 (ZPM) molecular sieves were produced by a surfactant-assisted technique. The structural and textural features were examined through spectroscopic and analytical techniques. The XRD analysis indicated broadening of diffraction peaks and a shift towards higher 2-theta values in the metal-incorporated (M-MCM-41) samples, confirming the successful integration of metal atoms into the MCM-41 framework; it also highlighted the preservation of a hexagonal structure with reasonable regularity, emphasizing the influence of metal incorporation on the mesoporous architecture of MCM-41. N<sub>2</sub> adsorption–desorption isotherms revealed type IV isotherms for all samples; the BET specific surface area decreased to 672.48, 667.90, and 562.50 m<sup>2</sup>/g in ZM, ZCM, and ZPM, respectively comparing to the unincorporated MCM-41 sample (1200 m<sup>2</sup>/g), indicating partial filling of mesopores by metal centers, as confirmed by TEM images. The diffuse reflectance spectra exhibited a noteworthy optical band gap reduction of MCM-41 (5.98 eV) upon the incorporation of Zn and Co/Zn ions, resulting in values of 5.86 and 5.24 eV, respectively, with refractive index values close to 2. Additional absorption bands energies are observed at 3.14, 3.18, and 1.70 eV in ZM, ZPM, and ZCM samples, respectively suggesting the suitability of the metal incorporated samples for the photocatalytic applications. The M-incorporated samples exhibited a decline in the transmission intensity accompanied by small shifts. The enhanced antimicrobial activity of the metal-incorporated samples, surpassing that of the pure MCM-41 against a variety of tested microorganisms, is attributed to the presence of incorporated metal species, which create a more acidic environment and substantially contribute to the heightened antimicrobial effectiveness. The ZM compound demonstrated potent inhibition against Bacillus cereus and Pseudomonas aeruginosa bacteria, displaying comparable efficacy to Ampicillin, as a reference antibiotic. Additionally, ZPM exhibited considerable inhibitory activity against Escherichia coli, surpassing the reference antibiotic and showing similar effectiveness against Bacillus cereus, Pseudomonas aeruginosa, and Salmonella typhimurium.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1915 - 1931"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01634-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01634-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mono and bimetallic modified MCM-41(Mobil Composition of Matter No. 41): Zn-MCM (ZM), Zn/Co-MCM41 (ZCM), and Zn/Pd-MCM-41 (ZPM) molecular sieves were produced by a surfactant-assisted technique. The structural and textural features were examined through spectroscopic and analytical techniques. The XRD analysis indicated broadening of diffraction peaks and a shift towards higher 2-theta values in the metal-incorporated (M-MCM-41) samples, confirming the successful integration of metal atoms into the MCM-41 framework; it also highlighted the preservation of a hexagonal structure with reasonable regularity, emphasizing the influence of metal incorporation on the mesoporous architecture of MCM-41. N2 adsorption–desorption isotherms revealed type IV isotherms for all samples; the BET specific surface area decreased to 672.48, 667.90, and 562.50 m2/g in ZM, ZCM, and ZPM, respectively comparing to the unincorporated MCM-41 sample (1200 m2/g), indicating partial filling of mesopores by metal centers, as confirmed by TEM images. The diffuse reflectance spectra exhibited a noteworthy optical band gap reduction of MCM-41 (5.98 eV) upon the incorporation of Zn and Co/Zn ions, resulting in values of 5.86 and 5.24 eV, respectively, with refractive index values close to 2. Additional absorption bands energies are observed at 3.14, 3.18, and 1.70 eV in ZM, ZPM, and ZCM samples, respectively suggesting the suitability of the metal incorporated samples for the photocatalytic applications. The M-incorporated samples exhibited a decline in the transmission intensity accompanied by small shifts. The enhanced antimicrobial activity of the metal-incorporated samples, surpassing that of the pure MCM-41 against a variety of tested microorganisms, is attributed to the presence of incorporated metal species, which create a more acidic environment and substantially contribute to the heightened antimicrobial effectiveness. The ZM compound demonstrated potent inhibition against Bacillus cereus and Pseudomonas aeruginosa bacteria, displaying comparable efficacy to Ampicillin, as a reference antibiotic. Additionally, ZPM exhibited considerable inhibitory activity against Escherichia coli, surpassing the reference antibiotic and showing similar effectiveness against Bacillus cereus, Pseudomonas aeruginosa, and Salmonella typhimurium.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.