Spatial and Chemical Dual Nano‐Confined Ultrastable Perovskite Quantum Dots Glass Manifesting Exciton Modulation

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-06-12 DOI:10.1002/adom.202400630
Pengwei Wang, Zhiping Hu, Peixi Cong, Fengxian Zhou, Qi Yue, Zixiao Xue, Chenfang Lin, Ying Jiang, Juan Du, Anlian Pan, Long Zhang, Jiabin Cui, Jin He
{"title":"Spatial and Chemical Dual Nano‐Confined Ultrastable Perovskite Quantum Dots Glass Manifesting Exciton Modulation","authors":"Pengwei Wang, Zhiping Hu, Peixi Cong, Fengxian Zhou, Qi Yue, Zixiao Xue, Chenfang Lin, Ying Jiang, Juan Du, Anlian Pan, Long Zhang, Jiabin Cui, Jin He","doi":"10.1002/adom.202400630","DOIUrl":null,"url":null,"abstract":"Nano‐confined synthesis of perovskite quantum dots (QDs) in solid matrix is emerging as a promising route to solve their long‐standing stability problem. Utilizing sol‐gel derived nanoporous glass as matrix that has high flexibility in chemical composition and pore size, a novel spatial and chemical dual nano‐confined strategy is presented for the synthesis of ultrastable perovskite QDs with tunable composition and bandgap in glass. The findings reveal that the Pb─O bonding is formed at perovskite QDs/glass interface during a nano‐confined chemical vapor deposition (CVD) reaction. In particular, the presence of interfacial chemical bonding is discovered to be critical for passivating surface traps and stabilizing the perovskite QDs during the final densification process (related photoluminescence intensity maintained ≈100% after immersed in aqueous solution for 30 days). Series optical spectroscopy unravels the exciton modulation (80 meV) of perovskite QDs in nanoporous and densified glass related to the unique combination of dual physical and chemistry nano‐confined effect. By shedding light on the nano‐confined growth of functional nanocrystals, the research offers the key paths for fabricating high‐performance perovskite devices.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202400630","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nano‐confined synthesis of perovskite quantum dots (QDs) in solid matrix is emerging as a promising route to solve their long‐standing stability problem. Utilizing sol‐gel derived nanoporous glass as matrix that has high flexibility in chemical composition and pore size, a novel spatial and chemical dual nano‐confined strategy is presented for the synthesis of ultrastable perovskite QDs with tunable composition and bandgap in glass. The findings reveal that the Pb─O bonding is formed at perovskite QDs/glass interface during a nano‐confined chemical vapor deposition (CVD) reaction. In particular, the presence of interfacial chemical bonding is discovered to be critical for passivating surface traps and stabilizing the perovskite QDs during the final densification process (related photoluminescence intensity maintained ≈100% after immersed in aqueous solution for 30 days). Series optical spectroscopy unravels the exciton modulation (80 meV) of perovskite QDs in nanoporous and densified glass related to the unique combination of dual physical and chemistry nano‐confined effect. By shedding light on the nano‐confined growth of functional nanocrystals, the research offers the key paths for fabricating high‐performance perovskite devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间和化学双纳米约束超稳定 Perovskite 量子点玻璃表现出的激子调制
在固体基质中纳米封闭合成包光体量子点(QDs)是解决其长期稳定性问题的一条很有前景的途径。溶胶-凝胶法衍生出的纳米多孔玻璃在化学成分和孔径大小方面具有很高的灵活性,本研究利用这种基质,提出了一种新颖的空间和化学双重纳米约束策略,用于在玻璃中合成具有可调成分和带隙的超稳定包光体量子点。研究结果表明,在纳米约束化学气相沉积(CVD)反应过程中,Pb─O 键形成于包晶QDs/玻璃界面。特别是,在最后的致密化过程中,发现界面化学键的存在对于钝化表面陷阱和稳定包晶QD至关重要(在水溶液中浸泡30天后,相关的光致发光强度保持在≈100%)。系列光学光谱揭示了在纳米多孔和致密化玻璃中的包光体 QD 的激子调制(80 meV),这与独特的物理和化学双重纳米约束效应相结合有关。通过揭示功能纳米晶体的纳米约束生长,该研究为制造高性能的过氧化物器件提供了关键路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Fusion of Selenium‐Embedded Multi‐Resonance Units Toward Narrowband Emission and Fast Triplet‐Singlet Exciton Conversion Rationalizing the Amplified Spontaneous Emission Mechanism in CsPbBr3 Perovskite Nanocrystals Films by means of Optical Gain Measurements Masthead: (Advanced Optical Materials 21/2024) Broadband Mode Division Multiplexing of OAM‐Modes by a Micro Printed Waveguide Structure (Advanced Optical Materials 21/2024) Topological broadband invisibility (Advanced Optical Materials 21/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1