Numerical Investigation of Model Support, Closed Engine Nacelle and Scale Effect on a Wind Tunnel Test Model

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE Aerospace Pub Date : 2024-06-11 DOI:10.3390/aerospace11060464
Ioan-Laurentiu Padureanu, D. Pepelea, Gilbert Stoican, Marco Marini, Nicole Viola, Matthew Clay
{"title":"Numerical Investigation of Model Support, Closed Engine Nacelle and Scale Effect on a Wind Tunnel Test Model","authors":"Ioan-Laurentiu Padureanu, D. Pepelea, Gilbert Stoican, Marco Marini, Nicole Viola, Matthew Clay","doi":"10.3390/aerospace11060464","DOIUrl":null,"url":null,"abstract":"In the frame of the H2020 MORE&LESS project co-funded by European Commission, a test campaign for a hypersonic vehicle demonstrator took place at the INCAS Trisonic Facility. CFD analysis was used to quantify the effects of the wind tunnel model support, the closed engine nacelle, and to perform the Reynolds number extrapolation. Three sets of simulations were used in order to generate the corrections. The wind tunnel configuration with sting, sting cavity, and closed nacelle was used as the baseline, with the aim of matching the experimental results as precisely as possible. A configuration with a flow-through nacelle and the shock cone in the appropriate position for each Mach number and no sting or cavity was used to determine the effect of the sting and the closed nacelle. For the Reynolds extrapolation, a 1:1 model was used, with the boundary conditions deriving from the theoretical trajectory of the vehicle. The CFD results for the wind tunnel configuration closely align with the experimental data. Significant differences between the three configurations can be observed just for the pitching moment, and those are caused by the presence of the sting and the open nacelle. The difference in Reynolds number does not seem to have a significant effect on the aerodynamic coefficients.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In the frame of the H2020 MORE&LESS project co-funded by European Commission, a test campaign for a hypersonic vehicle demonstrator took place at the INCAS Trisonic Facility. CFD analysis was used to quantify the effects of the wind tunnel model support, the closed engine nacelle, and to perform the Reynolds number extrapolation. Three sets of simulations were used in order to generate the corrections. The wind tunnel configuration with sting, sting cavity, and closed nacelle was used as the baseline, with the aim of matching the experimental results as precisely as possible. A configuration with a flow-through nacelle and the shock cone in the appropriate position for each Mach number and no sting or cavity was used to determine the effect of the sting and the closed nacelle. For the Reynolds extrapolation, a 1:1 model was used, with the boundary conditions deriving from the theoretical trajectory of the vehicle. The CFD results for the wind tunnel configuration closely align with the experimental data. Significant differences between the three configurations can be observed just for the pitching moment, and those are caused by the presence of the sting and the open nacelle. The difference in Reynolds number does not seem to have a significant effect on the aerodynamic coefficients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型支撑、封闭式发动机短舱和风洞试验模型比例效应的数值研究
在欧盟委员会共同资助的 H2020 MORE&LESS 项目框架内,在 INCAS Trisonic 设备上进行了高超音速飞行器演示试验。CFD 分析用于量化风洞模型支架、封闭式发动机短舱的影响,并执行雷诺数外推。为了生成修正,使用了三组模拟。风洞配置中的激振杆、激振腔和封闭式短舱被用作基线,目的是尽可能精确地匹配实验结果。为了确定激流尾翼和封闭式短舱的效果,使用了一种配置,即在每个马赫数的适当位置都有一个穿流短舱和减震锥,并且没有激流尾翼或空腔。对于雷诺外推法,使用的是 1:1 模型,边界条件来自飞行器的理论轨迹。风洞配置的 CFD 结果与实验数据非常吻合。仅在俯仰力矩方面可以观察到三种配置之间的显著差异,这些差异是由尾翼和开放式短舱的存在造成的。雷诺数的差异似乎对空气动力系数没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
期刊最新文献
On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data Assessment of Flyby Methods as Applied to Close Encounters among Asteroids A Multi-Objective Dynamic Mission-Scheduling Algorithm Considering Perturbations for Earth Observation Satellites Numerical Study on Far-Field Noise Characteristic Generated by Wall-Mounted Swept Finite-Span Airfoil within Transonic Flow Number of Blades’ Influence on the Performance of Rotor with Equal Solidity in Open and Shrouded Configurations: Experimental Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1