Mn2+–Mn2+ Dimers Induced Robust Light Absorption in Heavy Mn2+ Doped ZnAl2O4 Near‐Infrared Phosphor with an Excellent Photoluminescence Quantum Yield and Thermal Stability

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-06-11 DOI:10.1002/adom.202400574
Chenyang Zhan, Haomiao Zhu, Sisi Liang, Wendong Nie, Zihao Wang, Maochun Hong
{"title":"Mn2+–Mn2+ Dimers Induced Robust Light Absorption in Heavy Mn2+ Doped ZnAl2O4 Near‐Infrared Phosphor with an Excellent Photoluminescence Quantum Yield and Thermal Stability","authors":"Chenyang Zhan, Haomiao Zhu, Sisi Liang, Wendong Nie, Zihao Wang, Maochun Hong","doi":"10.1002/adom.202400574","DOIUrl":null,"url":null,"abstract":"Transition metal ions, such as Cr3+, Fe3+, and Ni2+, are widely recognized activators for efficient broadband near‐infrared (NIR) phosphors. However, the potential of Mn2+ ions as NIR‐emitting activators is relatively overlooked due to their typically narrowband emission in the visible spectral region and relatively weak absorption. Herein, a heavy Mn2+‐doped Zn1‐xAl2O4: xMn2+ (ZAO: xMn2+) phosphor is presented that exhibits a single NIR emission band peaked at 830 nm with a bandwidth of 135 nm under excitation at 450 nm. Through comprehensive structural and spectral analysis, this NIR band is attributed to the emission originating from Mn2+ ions within the MnO6 octahedra. Importantly, the formation of Mn2+–Mn2+ dimers breaks the spin‐forbidden rule and significantly enhances the transition probability, as supported by the excited state dynamic analysis. Consequently, the optimal ZAO: 0.70Mn2+ sample shows high internal/external photoluminescence quantum yields of 85.8%/36.9%, along with good thermal stability demonstrated by the emission intensity at 423 K retains 60% of that at 298 K. Finally, a prototype NIR pc‐LED device is fabricated by combining ZAO: 0.70Mn2+ phosphor with a 450 nm blue diode chip, generating an NIR output power of 28.84 mW at 100 mA. This study provides novel insights into high‐performance Mn2+‐activated NIR phosphors.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202400574","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal ions, such as Cr3+, Fe3+, and Ni2+, are widely recognized activators for efficient broadband near‐infrared (NIR) phosphors. However, the potential of Mn2+ ions as NIR‐emitting activators is relatively overlooked due to their typically narrowband emission in the visible spectral region and relatively weak absorption. Herein, a heavy Mn2+‐doped Zn1‐xAl2O4: xMn2+ (ZAO: xMn2+) phosphor is presented that exhibits a single NIR emission band peaked at 830 nm with a bandwidth of 135 nm under excitation at 450 nm. Through comprehensive structural and spectral analysis, this NIR band is attributed to the emission originating from Mn2+ ions within the MnO6 octahedra. Importantly, the formation of Mn2+–Mn2+ dimers breaks the spin‐forbidden rule and significantly enhances the transition probability, as supported by the excited state dynamic analysis. Consequently, the optimal ZAO: 0.70Mn2+ sample shows high internal/external photoluminescence quantum yields of 85.8%/36.9%, along with good thermal stability demonstrated by the emission intensity at 423 K retains 60% of that at 298 K. Finally, a prototype NIR pc‐LED device is fabricated by combining ZAO: 0.70Mn2+ phosphor with a 450 nm blue diode chip, generating an NIR output power of 28.84 mW at 100 mA. This study provides novel insights into high‐performance Mn2+‐activated NIR phosphors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂重 Mn2+ 的 ZnAl2O4 近红外荧光粉中 Mn2+-Mn2+ 二聚体诱导的强光吸收具有优异的光致发光量子产率和热稳定性
过渡金属离子,如 Cr3+、Fe3+ 和 Ni2+,是公认的高效宽带近红外(NIR)荧光粉活化剂。然而,由于 Mn2+ 离子通常在可见光谱区窄带发射且吸收相对较弱,因此其作为近红外发射活化剂的潜力相对被忽视。本文介绍了一种重 Mn2+掺杂的 Zn1-xAl2O4: xMn2+(ZAO: xMn2+)荧光粉,在 450 纳米波长的激发下,该荧光粉在 830 纳米波长处显示出单个近红外发射带峰值,带宽为 135 纳米波长。通过全面的结构和光谱分析,该近红外波段的发射源于 MnO6 八面体中的 Mn2+ 离子。重要的是,Mn2+-Mn2+ 二聚体的形成打破了自旋禁止规则,显著提高了跃迁概率,激发态动态分析也证明了这一点。因此,最佳的ZAO: 0.70Mn2+ 样品显示出 85.8%/36.9% 的高内部/外部光致发光量子产率,以及良好的热稳定性,在 423 K 时的发射强度保持在 298 K 时的 60%。最后,通过将ZAO: 0.70Mn2+ 荧光粉与 450 nm 的蓝色二极管芯片相结合,制造出了一个近红外 pc-LED 器件原型,在 100 mA 时产生 28.84 mW 的近红外输出功率。这项研究为高性能 Mn2+激活的近红外荧光粉提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Fusion of Selenium‐Embedded Multi‐Resonance Units Toward Narrowband Emission and Fast Triplet‐Singlet Exciton Conversion Rationalizing the Amplified Spontaneous Emission Mechanism in CsPbBr3 Perovskite Nanocrystals Films by means of Optical Gain Measurements Masthead: (Advanced Optical Materials 21/2024) Broadband Mode Division Multiplexing of OAM‐Modes by a Micro Printed Waveguide Structure (Advanced Optical Materials 21/2024) Topological broadband invisibility (Advanced Optical Materials 21/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1