{"title":"Airborne Lithium Battery Health Assessment: An Improved Support Vector Machine Algorithm for Imbalanced Sample Sets","authors":"Chunxia Yang, Hongjuan Ge, Hui Jin, Shengjun Liu","doi":"10.3390/aerospace11060467","DOIUrl":null,"url":null,"abstract":"The health assessment of airborne lithium batteries is crucial for flight testing, ensuring the safety and reliability of aircraft power systems. This paper proposes a support vector machine-based algorithm for the health assessment of airborne lithium batteries, featuring a dynamic correction mechanism for the risk loss penalty parameter. The proposed approach systematically adjusts risk loss penalty parameters based on sample misjudgment ratios and incorporates fault identification corrections to meet the safety requirements of the airborne operation. The experimental results demonstrate the stability and reliability of the proposed algorithm in hyperplane deviation suppression as well as significant improvements in fault sample recall rates. When compared with traditional SVM and other baseline methods such as Random Forest and SVR, our method significantly outperformed these algorithms in terms of accuracy, recall rate, and precision rate. This study provides an efficient and reliable method for the health assessment of airborne lithium batteries, with significant application value.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060467","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The health assessment of airborne lithium batteries is crucial for flight testing, ensuring the safety and reliability of aircraft power systems. This paper proposes a support vector machine-based algorithm for the health assessment of airborne lithium batteries, featuring a dynamic correction mechanism for the risk loss penalty parameter. The proposed approach systematically adjusts risk loss penalty parameters based on sample misjudgment ratios and incorporates fault identification corrections to meet the safety requirements of the airborne operation. The experimental results demonstrate the stability and reliability of the proposed algorithm in hyperplane deviation suppression as well as significant improvements in fault sample recall rates. When compared with traditional SVM and other baseline methods such as Random Forest and SVR, our method significantly outperformed these algorithms in terms of accuracy, recall rate, and precision rate. This study provides an efficient and reliable method for the health assessment of airborne lithium batteries, with significant application value.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.