Computational Method for Optimal Electrolyte Screening Using Bayesian Optimization and Physics Based Battery Model

Vamsi Krishna Garapati, N. N. Dingari, Mahesh Mynam, Beena Rai
{"title":"Computational Method for Optimal Electrolyte Screening Using Bayesian Optimization and Physics Based Battery Model","authors":"Vamsi Krishna Garapati, N. N. Dingari, Mahesh Mynam, Beena Rai","doi":"10.1149/1945-7111/ad570b","DOIUrl":null,"url":null,"abstract":"\n Lithium-ion batteries (LIBs) powering electric vehicles and large-scale energy storage depend significantly on the composition of liquid electrolyte for optimal performance. We propose a framework coupling Bayesian optimization and physics based battery models to identify electrolytes optimal for specific set of requirements such as less capacity fade and internal heating etc. Our approach is validated through multiple case studies, demonstrating the framework’s efficacy in optimizing electrolyte properties. Additionally, we introduce a deviation index to quantify the proximity of the optimal electrolyte to those in a predefined database. With adaptability to various LIB metrics and battery chemistries, it provides a systematic and efficient approach for screening electrolytes based on system-level performance using physics-based models, contributing to advancements in battery technology for sustainable energy storage systems.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad570b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) powering electric vehicles and large-scale energy storage depend significantly on the composition of liquid electrolyte for optimal performance. We propose a framework coupling Bayesian optimization and physics based battery models to identify electrolytes optimal for specific set of requirements such as less capacity fade and internal heating etc. Our approach is validated through multiple case studies, demonstrating the framework’s efficacy in optimizing electrolyte properties. Additionally, we introduce a deviation index to quantify the proximity of the optimal electrolyte to those in a predefined database. With adaptability to various LIB metrics and battery chemistries, it provides a systematic and efficient approach for screening electrolytes based on system-level performance using physics-based models, contributing to advancements in battery technology for sustainable energy storage systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用贝叶斯优化和基于物理的电池模型进行最佳电解质筛选的计算方法
为电动汽车和大规模储能提供动力的锂离子电池(LIB)的最佳性能很大程度上取决于液态电解质的成分。我们提出了一个将贝叶斯优化和基于物理的电池模型相结合的框架,以确定满足特定要求(如减少容量衰减和内部加热等)的最佳电解质。我们的方法通过多个案例研究得到了验证,证明了该框架在优化电解质特性方面的功效。此外,我们还引入了偏差指数,以量化最佳电解质与预定义数据库中电解质的接近程度。该框架可适应各种 LIB 指标和电池化学性质,它提供了一种系统、高效的方法,可利用基于物理的模型,根据系统级性能筛选电解质,从而推动可持续储能系统电池技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography Mild and Fast Chemical Presodiation of Na0.44MnO2 Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1