{"title":"The Impact of Air-Tightness on Smoke Transport During High-Rise Building Fires Under Low-Temperature Conditions","authors":"Haoyou Zhao, Zhaoyang Yu, Fei Liu, Wen Han, Yanhai Liu, Yunpeng Zhou","doi":"10.1007/s10694-024-01583-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs a combination of theoretical analysis, Similarity simulation, and computational fluid dynamics (CFD) to examine the airflow caused by the stack effect under different leakage conditions in high-rise buildings and the transport of fire smoke. Building on previous research, we quantify the leakage area using a formula and classify it into two categories, \"tight\" and \"leaky.\" Based on the analysis results, we conduct a similarity simulation experiment in a small-scale high-rise building experimental platform with a height of 5.2 m to create a certain size of leakage area at the bottom and record carbon monoxide concentration at different locations and times. The obtained result is then compared with the numerical simulation result, and the similarity simulation results match well with the numerical simulation results. The findings demonstrate that increasing the leakage area accelerates the transport of smoke due to the stack effect, particularly at higher floors. This paper also discusses strategies to impede smoke diffusion, providing valuable references for the safety design of high-rise buildings.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3571 - 3603"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01583-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs a combination of theoretical analysis, Similarity simulation, and computational fluid dynamics (CFD) to examine the airflow caused by the stack effect under different leakage conditions in high-rise buildings and the transport of fire smoke. Building on previous research, we quantify the leakage area using a formula and classify it into two categories, "tight" and "leaky." Based on the analysis results, we conduct a similarity simulation experiment in a small-scale high-rise building experimental platform with a height of 5.2 m to create a certain size of leakage area at the bottom and record carbon monoxide concentration at different locations and times. The obtained result is then compared with the numerical simulation result, and the similarity simulation results match well with the numerical simulation results. The findings demonstrate that increasing the leakage area accelerates the transport of smoke due to the stack effect, particularly at higher floors. This paper also discusses strategies to impede smoke diffusion, providing valuable references for the safety design of high-rise buildings.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.