Xuxian Liu, Yongchang Jiang, Yaqun Wang, Lijia Pan
{"title":"Design Principles and Development Status of Flexible Integrated Thin and Lightweight Zinc-Ion Batteries","authors":"Xuxian Liu, Yongchang Jiang, Yaqun Wang, Lijia Pan","doi":"10.3390/batteries10060200","DOIUrl":null,"url":null,"abstract":"The rapid advancement of wearable devices and flexible electronics has spurred an increasing need for high-performance, thin, lightweight, and flexible energy storage devices. In particular, thin and lightweight zinc-ion batteries require battery materials that possess exceptional flexibility and mechanical stability to accommodate complex deformations often encountered in flexible device applications. Moreover, the development of compact and thin battery structures is essential to minimize the overall size and weight while maintaining excellent electrochemical performance, including high energy density, long cycle life, and stable charge/discharge characteristics, to ensure their versatility across various applications. Researchers have made significant strides in enhancing the battery’s performance by optimizing crucial components such as electrode materials, electrolytes, separators, and battery structure. This review provides a comprehensive analysis of the design principles essential for achieving thinness in zinc-ion batteries, along with a summary of the preparation methods and potential applications of these batteries. Moreover, it delves into the challenges associated with achieving thinness in zinc-ion batteries and proposes effective countermeasures to address these hurdles. This review concludes by offering insights into future developments in this field, underscoring the continual advancements and innovations that can be expected.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10060200","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of wearable devices and flexible electronics has spurred an increasing need for high-performance, thin, lightweight, and flexible energy storage devices. In particular, thin and lightweight zinc-ion batteries require battery materials that possess exceptional flexibility and mechanical stability to accommodate complex deformations often encountered in flexible device applications. Moreover, the development of compact and thin battery structures is essential to minimize the overall size and weight while maintaining excellent electrochemical performance, including high energy density, long cycle life, and stable charge/discharge characteristics, to ensure their versatility across various applications. Researchers have made significant strides in enhancing the battery’s performance by optimizing crucial components such as electrode materials, electrolytes, separators, and battery structure. This review provides a comprehensive analysis of the design principles essential for achieving thinness in zinc-ion batteries, along with a summary of the preparation methods and potential applications of these batteries. Moreover, it delves into the challenges associated with achieving thinness in zinc-ion batteries and proposes effective countermeasures to address these hurdles. This review concludes by offering insights into future developments in this field, underscoring the continual advancements and innovations that can be expected.