Fuzzy logic-based computation offloading technique in fog computing

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Concurrency and Computation-Practice & Experience Pub Date : 2024-06-10 DOI:10.1002/cpe.8198
Dinesh Soni, Neetesh Kumar
{"title":"Fuzzy logic-based computation offloading technique in fog computing","authors":"Dinesh Soni,&nbsp;Neetesh Kumar","doi":"10.1002/cpe.8198","DOIUrl":null,"url":null,"abstract":"<p>The fog computing environment expands the capabilities of cloud computing by moving computing, storage, and networking services closer to IoT devices. These resource-constrained IoT devices often face challenges like high task failure rates and extended execution latency due to data traffic congestion. Distributing IoT services through task offloading across different layers of computing paradigms enhances QoS (Quality of Service) parameters. This endeavor aims to allocate custom workflow-based real-time tasks or jobs for processing across various cloud/fog/edge layers, optimizing QoS factors like makespan, energy consumption, and cost. In the fog computing environment, challenges arise due to uncertainties related to job execution locations and the ability to predict future user requirements. Fuzzy logic offers low-complexity solutions for handling unpredictable and rapidly changing conditions. This paper proposes a hybrid fog-cloud-based computing architecture and an intelligent fuzzy logic-based computation offloading approach. This approach effectively allocates workloads among edge, fog, and cloud layers, resulting in improvements in makespan time (7.51%), energy consumption (4.63%), and cost (13.60%). The proposed method selects suitable processing units or compute nodes for job execution, utilizing heterogeneous resources. Simulation results demonstrate that the proposed methodology outperforms current state-of-the-art algorithms.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 20","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8198","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The fog computing environment expands the capabilities of cloud computing by moving computing, storage, and networking services closer to IoT devices. These resource-constrained IoT devices often face challenges like high task failure rates and extended execution latency due to data traffic congestion. Distributing IoT services through task offloading across different layers of computing paradigms enhances QoS (Quality of Service) parameters. This endeavor aims to allocate custom workflow-based real-time tasks or jobs for processing across various cloud/fog/edge layers, optimizing QoS factors like makespan, energy consumption, and cost. In the fog computing environment, challenges arise due to uncertainties related to job execution locations and the ability to predict future user requirements. Fuzzy logic offers low-complexity solutions for handling unpredictable and rapidly changing conditions. This paper proposes a hybrid fog-cloud-based computing architecture and an intelligent fuzzy logic-based computation offloading approach. This approach effectively allocates workloads among edge, fog, and cloud layers, resulting in improvements in makespan time (7.51%), energy consumption (4.63%), and cost (13.60%). The proposed method selects suitable processing units or compute nodes for job execution, utilizing heterogeneous resources. Simulation results demonstrate that the proposed methodology outperforms current state-of-the-art algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雾计算中基于模糊逻辑的计算卸载技术
雾计算环境通过将计算、存储和网络服务迁移到物联网设备附近,扩展了云计算的功能。这些资源受限的物联网设备经常面临任务失败率高、数据流量拥堵导致执行延迟延长等挑战。通过跨不同计算范例层的任务卸载来分配物联网服务,可以提高 QoS(服务质量)参数。这项工作旨在跨不同的云/雾/边缘层分配基于工作流的定制实时任务或工作进行处理,优化诸如时间跨度、能耗和成本等 QoS 因素。在雾计算环境中,由于作业执行位置和预测未来用户需求的能力存在不确定性,因此出现了一些挑战。模糊逻辑为处理不可预测和快速变化的条件提供了低复杂度的解决方案。本文提出了一种基于雾-云的混合计算架构和一种基于模糊逻辑的智能计算卸载方法。这种方法能有效地在边缘层、雾层和云层之间分配工作负载,从而缩短了正常运行时间(7.51%),降低了能耗(4.63%)和成本(13.60%)。建议的方法利用异构资源为作业执行选择合适的处理单元或计算节点。仿真结果表明,所提出的方法优于目前最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
期刊最新文献
Issue Information Improving QoS in cloud resources scheduling using dynamic clustering algorithm and SM-CDC scheduling model Issue Information Issue Information Camellia oleifera trunks detection and identification based on improved YOLOv7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1