Airborne LiDAR Point Cloud Filtering Algorithm Based on Supervoxel Ground Saliency

Weiwei Fan, Xinyi Liu, Yongjun Zhang, Dongdong Yue, Senyuan Wang, Jiachen Zhong
{"title":"Airborne LiDAR Point Cloud Filtering Algorithm Based on Supervoxel Ground Saliency","authors":"Weiwei Fan, Xinyi Liu, Yongjun Zhang, Dongdong Yue, Senyuan Wang, Jiachen Zhong","doi":"10.5194/isprs-annals-x-2-2024-73-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Airborne laser scanning (ALS) is able to penetrate sparse vegetation to obtain highly accurate height information on the ground surface. LiDAR point cloud filtering is an important prerequisite for downstream tasks such as digital terrain model (DTM) extraction and point cloud classification. Aiming at the problem that existing LiDAR point cloud filtering algorithms are prone to errors in complex terrain environments, an ALS point cloud filtering method based on supervoxel ground saliency (SGSF) is proposed in this paper. Firstly, a boundary-preserving TBBP supervoxel algorithm is utilized to perform supervoxel segmentation of ALS point clouds, and multi-directional scanning strip delineation and ground saliency computation are carried out for the clusters of supervoxel point clouds. Subsequently, the energy function is constructed by introducing the ground saliency and the optimal filtering plane of the supervoxel is solved using the semi-global optimization idea to realize the effective distinction between ground and non-ground points. Experimental results on the ALS point cloud filtering dataset openGF indicate that, compared to state-of-the-art surface-based filtering methods, the SGSF algorithm achieves the highest average values across various terrain conditions for multiple evaluation metrics. It also addresses the issue of recessed structures in buildings being prone to misclassification as ground points.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-2-2024-73-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Airborne laser scanning (ALS) is able to penetrate sparse vegetation to obtain highly accurate height information on the ground surface. LiDAR point cloud filtering is an important prerequisite for downstream tasks such as digital terrain model (DTM) extraction and point cloud classification. Aiming at the problem that existing LiDAR point cloud filtering algorithms are prone to errors in complex terrain environments, an ALS point cloud filtering method based on supervoxel ground saliency (SGSF) is proposed in this paper. Firstly, a boundary-preserving TBBP supervoxel algorithm is utilized to perform supervoxel segmentation of ALS point clouds, and multi-directional scanning strip delineation and ground saliency computation are carried out for the clusters of supervoxel point clouds. Subsequently, the energy function is constructed by introducing the ground saliency and the optimal filtering plane of the supervoxel is solved using the semi-global optimization idea to realize the effective distinction between ground and non-ground points. Experimental results on the ALS point cloud filtering dataset openGF indicate that, compared to state-of-the-art surface-based filtering methods, the SGSF algorithm achieves the highest average values across various terrain conditions for multiple evaluation metrics. It also addresses the issue of recessed structures in buildings being prone to misclassification as ground points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于上像素地面显著性的机载激光雷达点云过滤算法
摘要。机载激光扫描(ALS)能够穿透稀疏植被,获取地表高精度高度信息。激光雷达点云过滤是数字地形模型(DTM)提取和点云分类等下游任务的重要前提。针对现有的激光雷达点云滤波算法在复杂地形环境下容易产生误差的问题,本文提出了一种基于上像素地面显著性(SGSF)的 ALS 点云滤波方法。首先,利用保界 TBBP 上像素算法对 ALS 点云进行上像素分割,并对上像素点云簇进行多向扫描带划分和地面突出度计算。随后,通过引入地面突出度构建能量函数,并利用半全局优化思想求解上位点的最优滤波平面,从而实现地面点与非地面点的有效区分。在 ALS 点云过滤数据集 openGF 上的实验结果表明,与最先进的基于地表的过滤方法相比,SGSF 算法在各种地形条件下的多个评价指标的平均值最高。它还解决了建筑物中的凹陷结构容易被误判为地面点的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Annals UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide Using Passive Multi-Modal Sensor Data for Thermal Simulation of Urban Surfaces Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data Rectilinear Building Footprint Regularization Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1