A Novel Hyperspectral Salt Assessment Model for Weathering in Architectural Ruins

Yikang Ren, Fang Liu
{"title":"A Novel Hyperspectral Salt Assessment Model for Weathering in Architectural Ruins","authors":"Yikang Ren, Fang Liu","doi":"10.5194/isprs-annals-x-2-2024-201-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The Dunhuang murals, a significant part of Chinese heritage, have suffered deterioration primarily due to environmental and chemical factors, notably salt damage. This study proposes a sophisticated method that synergizes Fractional Order Differentiation (FOD) and Partial Least Squares Regression (PLSR) to accurately invert the phosphate content in the Mural Plaster of the Dunhuang paintings. The focal points of the research include: 1) To address the issue of information loss and reduced modeling precision caused by integer order differentiation algorithms, the FOD method is employed for preprocessing hyperspectral data. This approach ensures the fine spectral differences in the phosphate content of the Mural Plaster are precisely captured, 2) Utilizing PLSR, the study models the spectral bands identified at a significance level of 0.01 with measured conductivity values, thereby enabling the precise prediction of the phosphate content in the murals. The research outcomes reveal: 1) The FOD method can elucidate the nonlinear characteristics and variation patterns of the mural samples in the hyperspectral curve.As the order increases from zero to two, the number of spectral bands meeting the 0.01 significance test initially decreases and then increases. The highest absolute value of the positive correlation coefficient is observed at 1.9 orders, corresponding to the 2077 nm band, 2) For predicting the phosphate content in the murals, the model at 1.9 orders is most suitable for inversion. This model, after cross-validation, achieves a maximum R2 value of 0.783. This study created an efficient FOD-based model for estimating phosphate in mural plasters.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-2-2024-201-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The Dunhuang murals, a significant part of Chinese heritage, have suffered deterioration primarily due to environmental and chemical factors, notably salt damage. This study proposes a sophisticated method that synergizes Fractional Order Differentiation (FOD) and Partial Least Squares Regression (PLSR) to accurately invert the phosphate content in the Mural Plaster of the Dunhuang paintings. The focal points of the research include: 1) To address the issue of information loss and reduced modeling precision caused by integer order differentiation algorithms, the FOD method is employed for preprocessing hyperspectral data. This approach ensures the fine spectral differences in the phosphate content of the Mural Plaster are precisely captured, 2) Utilizing PLSR, the study models the spectral bands identified at a significance level of 0.01 with measured conductivity values, thereby enabling the precise prediction of the phosphate content in the murals. The research outcomes reveal: 1) The FOD method can elucidate the nonlinear characteristics and variation patterns of the mural samples in the hyperspectral curve.As the order increases from zero to two, the number of spectral bands meeting the 0.01 significance test initially decreases and then increases. The highest absolute value of the positive correlation coefficient is observed at 1.9 orders, corresponding to the 2077 nm band, 2) For predicting the phosphate content in the murals, the model at 1.9 orders is most suitable for inversion. This model, after cross-validation, achieves a maximum R2 value of 0.783. This study created an efficient FOD-based model for estimating phosphate in mural plasters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑遗址风化的新型高光谱盐分评估模型
摘要敦煌壁画是中国文化遗产的重要组成部分,主要因环境和化学因素(尤其是盐害)而退化。本研究提出了一种将分数阶微分法(FOD)和部分最小二乘法回归(PLSR)相结合的复杂方法,以准确反演敦煌壁画石膏中的磷酸盐含量。研究的重点包括1) 针对整阶微分算法造成的信息丢失和建模精度降低的问题,采用 FOD 方法对高光谱数据进行预处理。2) 利用 PLSR,该研究将显著性水平为 0.01 的光谱带与测得的电导率值进行建模,从而实现了对壁画中磷酸盐含量的精确预测。研究结果表明1)FOD 方法可以阐明高光谱曲线中壁画样本的非线性特征和变化规律。随着阶数从 0 增加到 2,符合 0.01 显著性检验的光谱带数量先减少后增加。正相关系数的最高绝对值出现在 1.9 阶,对应于 2077 nm 波段,2)对于预测壁画中的磷酸盐含量,1.9 阶的模型最适合反演。经过交叉验证,该模型的最大 R2 值为 0.783。这项研究建立了一个基于 FOD 的高效模型,用于估算壁画灰泥中的磷酸盐含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Annals UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide Using Passive Multi-Modal Sensor Data for Thermal Simulation of Urban Surfaces Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data Rectilinear Building Footprint Regularization Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1