Impact of Mechanical Degradation in Polycrystalline NMC Particle on the Electrochemical Performance of Lithium-Ion Batteries

Vinit Nagda, Henrik Ekström, Artem Kulachenko
{"title":"Impact of Mechanical Degradation in Polycrystalline NMC Particle on the Electrochemical Performance of Lithium-Ion Batteries","authors":"Vinit Nagda, Henrik Ekström, Artem Kulachenko","doi":"10.1149/1945-7111/ad5622","DOIUrl":null,"url":null,"abstract":"\n Lithium-ion batteries (LIBs) are widely chosen for energy storage owing to their high coulombic efficiency and energy density. Within the positive electrode materials of LIBs, the structural integrity of secondary particles, composed of randomly oriented single-crystal primary particles, is crucial for sustained performance. These particles can fracture as a result of both mechanical stress and chemical interactions within the solid. Modelling LIBs is a complex task involving electro-chemo-mechanical phenomena and their interactions on different length scales. This study proposes a numerical modeling framework to investigate the active particle degradation and its impact on electrochemical performance. The model integrates mechanical and electrochemical processes, tracking crack evolution and mechanical failure through phase field damage. The coupled time-dependent non-linear partial differential equations are solved in a finite element framework using COMSOL Multiphysics. The model offers numerical insights into intergranular and transgranular fracture within secondary particles. The electrolyte infiltration into cracks reduces the electrochemical overpotential due to the increase in electrochemically active surface area, positively affecting performance. However, prolonged cycling with particle cracking poses severe threat to the battery performance and capacity. This comprehensive numerical modeling approach provides valuable insights into the intricate interplay of mechanical and electrochemical factors governing LIB performance and degradation.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) are widely chosen for energy storage owing to their high coulombic efficiency and energy density. Within the positive electrode materials of LIBs, the structural integrity of secondary particles, composed of randomly oriented single-crystal primary particles, is crucial for sustained performance. These particles can fracture as a result of both mechanical stress and chemical interactions within the solid. Modelling LIBs is a complex task involving electro-chemo-mechanical phenomena and their interactions on different length scales. This study proposes a numerical modeling framework to investigate the active particle degradation and its impact on electrochemical performance. The model integrates mechanical and electrochemical processes, tracking crack evolution and mechanical failure through phase field damage. The coupled time-dependent non-linear partial differential equations are solved in a finite element framework using COMSOL Multiphysics. The model offers numerical insights into intergranular and transgranular fracture within secondary particles. The electrolyte infiltration into cracks reduces the electrochemical overpotential due to the increase in electrochemically active surface area, positively affecting performance. However, prolonged cycling with particle cracking poses severe threat to the battery performance and capacity. This comprehensive numerical modeling approach provides valuable insights into the intricate interplay of mechanical and electrochemical factors governing LIB performance and degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多晶 NMC 粒子的机械降解对锂离子电池电化学性能的影响
锂离子电池(LIB)因其高库仑效率和能量密度而被广泛用于储能。在锂离子电池的正极材料中,由随机取向的单晶原生颗粒组成的二次颗粒的结构完整性对于电池的持续性能至关重要。这些颗粒会因固体内部的机械应力和化学作用而断裂。LIB 的建模是一项复杂的任务,涉及不同长度尺度上的电化学机械现象及其相互作用。本研究提出了一个数值建模框架,用于研究活性颗粒降解及其对电化学性能的影响。该模型整合了机械和电化学过程,通过相场损伤跟踪裂纹演变和机械故障。使用 COMSOL Multiphysics 在有限元框架内求解了与时间相关的耦合非线性偏微分方程。该模型提供了对二次颗粒内部晶间和跨晶断裂的数值见解。由于电化学活性表面积的增加,电解液渗入裂缝会降低电化学过电位,从而对性能产生积极影响。然而,颗粒开裂导致的长时间循环会对电池性能和容量构成严重威胁。这种全面的数值建模方法为我们深入了解影响 LIB 性能和降解的机械和电化学因素之间错综复杂的相互作用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography Mild and Fast Chemical Presodiation of Na0.44MnO2 Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1