Hybrid permanent magnet synchronous generator as an efficient wind energy transducer for modern wind turbines

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2024-06-10 DOI:10.1177/0309524x241256957
N. Elsonbaty, Mohamed A. Enany, Mahmoud Elymany
{"title":"Hybrid permanent magnet synchronous generator as an efficient wind energy transducer for modern wind turbines","authors":"N. Elsonbaty, Mohamed A. Enany, Mahmoud Elymany","doi":"10.1177/0309524x241256957","DOIUrl":null,"url":null,"abstract":"This paper investigates a novel control strategy that enables hybrid excitation permanent magnet synchronous generator (HPMSG) to track the optimal extracted power of the modern wind turbine type (NASA-NSF). The proposed control mathematical model is based on two cases of variable speed—Maximum Power Point Tracking (MPPT) and variable speed—Constant Power Point Tracking (CPPT). The later one is specified for wind gust and higher than rated wind speed withstanding operation. The HPMSG generator quantitative performance characteristics are presented and validated through simulation for both steady and dynamics states. Simulation results prove the capability of the generator to operate correctly under load and speed variation over both MPPT and CPPT. The output voltage stays, in both cases, within the much lower limits that imposed by maximum values.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x241256957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a novel control strategy that enables hybrid excitation permanent magnet synchronous generator (HPMSG) to track the optimal extracted power of the modern wind turbine type (NASA-NSF). The proposed control mathematical model is based on two cases of variable speed—Maximum Power Point Tracking (MPPT) and variable speed—Constant Power Point Tracking (CPPT). The later one is specified for wind gust and higher than rated wind speed withstanding operation. The HPMSG generator quantitative performance characteristics are presented and validated through simulation for both steady and dynamics states. Simulation results prove the capability of the generator to operate correctly under load and speed variation over both MPPT and CPPT. The output voltage stays, in both cases, within the much lower limits that imposed by maximum values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合永磁同步发电机作为现代风力涡轮机的高效风能变换器
本文研究了一种新型控制策略,可使混合励磁永磁同步发电机(HPMSG)跟踪现代风力涡轮机(NASA-NSF)的最佳提取功率。所提出的控制数学模型基于变速-最大功率点跟踪(MPPT)和变速-恒功率点跟踪(CPPT)两种情况。后一种情况适用于承受阵风和高于额定风速的运行。介绍了 HPMSG 发电机的定量性能特征,并通过稳态和动态仿真进行了验证。仿真结果证明,发电机能够在负载和速度变化的情况下,通过 MPPT 和 CPPT 正常运行。在这两种情况下,输出电压都保持在最大值所规定的较低范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Optimizing efficiency and analyzing performance: Enhanced airfoil cross-sections for horizontal axis small wind turbines Numerical investigation of the structural-response analysis of a glass/epoxy composite blade for small-scale vertical-axis wind turbine Effective energy management strategy with a novel design of fuzzy logic and JAYA-based controllers in isolated DC/AC microgrids: A comparative analysis PSO-optimized sensor-less sliding mode control for variable speed wind turbine chains based on DPIG with neural-MRAS observer Wind power development: A historical review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1