{"title":"Adsorption of procyanidins B1 and B2 onto β-Glucan: adsorption isotherms and thermodynamics","authors":"Petra Matić, Šime Ukić, Lidija Jakobek","doi":"10.1007/s10450-024-00503-5","DOIUrl":null,"url":null,"abstract":"<div><p>The interactions between phenolic compounds and dietary fibers have generally received considerable attention because these interactions have a variety of applications, for example, in the production of functional foods, in the pharmaceutical industry, or in the production of films used as packaging materials for food. The aim of this study was to investigate the interactions between two flavan-3-ols: procyanidin B1 and procyanidin B2, and dietary fiber β-glucan. The adsorption process was studied at different temperatures (25, 37 and 45 °C) and different pH values (1.5, 5.5 and 10.0). The adsorption capacity of β-glucan for procyanidins (<i>q</i><sub>e</sub>) ranged from 44-489 mg g<sup>-1</sup>, depending on temperature and pH, and was generally higher for procyanidin B2. At the temperatures tested, the lowest <i>q</i><sub>e</sub> values for both procyanidins were obtained at 37 °C, while at the pH values used, the lowest <i>q</i><sub>e</sub> values were obtained at pH 5.5. The experimental data were fitted by Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, and Hill isotherms. Analysis of the fit of the applied isotherms led to the conclusion that the adsorption process studied was physical in nature in the range of applied temperatures and pH values. The process was spontaneous and exothermic for both procyanidins.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"1303 - 1313"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00503-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The interactions between phenolic compounds and dietary fibers have generally received considerable attention because these interactions have a variety of applications, for example, in the production of functional foods, in the pharmaceutical industry, or in the production of films used as packaging materials for food. The aim of this study was to investigate the interactions between two flavan-3-ols: procyanidin B1 and procyanidin B2, and dietary fiber β-glucan. The adsorption process was studied at different temperatures (25, 37 and 45 °C) and different pH values (1.5, 5.5 and 10.0). The adsorption capacity of β-glucan for procyanidins (qe) ranged from 44-489 mg g-1, depending on temperature and pH, and was generally higher for procyanidin B2. At the temperatures tested, the lowest qe values for both procyanidins were obtained at 37 °C, while at the pH values used, the lowest qe values were obtained at pH 5.5. The experimental data were fitted by Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, and Hill isotherms. Analysis of the fit of the applied isotherms led to the conclusion that the adsorption process studied was physical in nature in the range of applied temperatures and pH values. The process was spontaneous and exothermic for both procyanidins.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.