Amorphous Magnesium–Calcium Carbonate Phosphate: Crystallization Paced by the Reaction Solution Concentration

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-06-09 DOI:10.1021/acs.cgd.3c01420
Yibo Zhang, Jia-hua Liu, Yun-chen Long, Xinxue Tang, Jing Zhong, Hanzhu Zhang, Jian Lu* and Yang Yang Li*, 
{"title":"Amorphous Magnesium–Calcium Carbonate Phosphate: Crystallization Paced by the Reaction Solution Concentration","authors":"Yibo Zhang,&nbsp;Jia-hua Liu,&nbsp;Yun-chen Long,&nbsp;Xinxue Tang,&nbsp;Jing Zhong,&nbsp;Hanzhu Zhang,&nbsp;Jian Lu* and Yang Yang Li*,&nbsp;","doi":"10.1021/acs.cgd.3c01420","DOIUrl":null,"url":null,"abstract":"<p >The presence of magnesium and phosphorus in calcium carbonate-based biominerals is increasingly found. Both elements play a significant role in the biomineralization process of amorphous calcium carbonate (ACC). While extensive research has focused on the effects of their compositions, less attention is given to the influence of precursor solution concentrations, which is essential for unraveling the crystallization mechanism. Herein, taking amorphous magnesium calcium carbonate phosphate (MgACCP) (molar ratio of Ca<sup>2+</sup>/Mg<sup>2+</sup>/CO<sub>3</sub><sup>2–</sup>/PO<sub>4</sub><sup>3–</sup> fixed at 4:1:4:1) as the example, we report that the amorphous stability highly depends on the precursor solution concentrations. Moderate concentrations (0.04–0.6 M) lead to faster crystallization within a week and the production of bundled nanofibers. In more diluted solutions (0.01 M), the accumulation of Ca<sup>2+</sup> and CO<sub>3</sub><sup>2–</sup> at the boundaries of colloidal nanobubbles leads to hydration, which stabilizes ACC. Conversely, in more concentrated solutions, a greater amount of Mg<sup>2+</sup> in the homogeneous solution binds with water to preserve the amorphous state of MgACCP. The hydration level is determined to be a critical factor in determining the crystallization rate. These findings offer new insights into the crystallization mechanism and morphology control of bioceramics.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c01420","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of magnesium and phosphorus in calcium carbonate-based biominerals is increasingly found. Both elements play a significant role in the biomineralization process of amorphous calcium carbonate (ACC). While extensive research has focused on the effects of their compositions, less attention is given to the influence of precursor solution concentrations, which is essential for unraveling the crystallization mechanism. Herein, taking amorphous magnesium calcium carbonate phosphate (MgACCP) (molar ratio of Ca2+/Mg2+/CO32–/PO43– fixed at 4:1:4:1) as the example, we report that the amorphous stability highly depends on the precursor solution concentrations. Moderate concentrations (0.04–0.6 M) lead to faster crystallization within a week and the production of bundled nanofibers. In more diluted solutions (0.01 M), the accumulation of Ca2+ and CO32– at the boundaries of colloidal nanobubbles leads to hydration, which stabilizes ACC. Conversely, in more concentrated solutions, a greater amount of Mg2+ in the homogeneous solution binds with water to preserve the amorphous state of MgACCP. The hydration level is determined to be a critical factor in determining the crystallization rate. These findings offer new insights into the crystallization mechanism and morphology control of bioceramics.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无定形磷酸镁钙碳酸盐:结晶速度取决于反应溶液浓度
在以碳酸钙为基础的生物矿物中发现镁和磷的情况越来越多。这两种元素在无定形碳酸钙(ACC)的生物矿化过程中发挥着重要作用。虽然大量研究都集中在这两种元素组成的影响上,但却较少关注前体溶液浓度的影响,而这对揭示结晶机制至关重要。在此,我们以无定形磷酸碳酸钙镁(MgACCP)(Ca2+/Mg2+/CO32-/PO43- 的摩尔比固定为 4:1:4:1)为例,报告了无定形稳定性高度依赖于前驱体溶液浓度。中等浓度(0.04-0.6 M)可在一周内加快结晶速度,并产生成束的纳米纤维。在较稀的溶液(0.01 M)中,胶体纳米气泡边界的 Ca2+ 和 CO32- 积累会导致水化,从而稳定 ACC。相反,在浓度更高的溶液中,均相溶液中更多的 Mg2+ 与水结合,以保持 MgACCP 的无定形状态。水合水平是决定结晶速率的关键因素。这些发现为生物陶瓷的结晶机制和形态控制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Photocatalytic Synthesis of Au Nanoplates Ion Site Substitution in a Sulfonylcalix[4]arene-Supported Ln8 (Ln = Tb and Eu) Coordination Wheel with Tunable Luminescence Functionalized Covalent Triazine Framework (CTF) for Catalytic CO2 Fixation and Synthesis of Value-Added Chemicals Flexible Ligands Constructed Metal–Organic Frameworks as Visual Test Paper for Fluorescent Detection Insights into the Illuminating World of Nanocrystalline Materials: Structure–Property Relationships in Precise Nanocrystals to Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1