Characterizing Changes in a Salt Hydrate Bed Using Micro X-Ray Computed Tomography

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2024-06-07 DOI:10.1007/s10921-024-01092-7
Aastha Arya, Jorge Martinez-Garcia, Philipp Schuetz, Amirhoushang Mahmoudi, Gerrit Brem, Pim A. J. Donkers, Mina Shahi
{"title":"Characterizing Changes in a Salt Hydrate Bed Using Micro X-Ray Computed Tomography","authors":"Aastha Arya,&nbsp;Jorge Martinez-Garcia,&nbsp;Philipp Schuetz,&nbsp;Amirhoushang Mahmoudi,&nbsp;Gerrit Brem,&nbsp;Pim A. J. Donkers,&nbsp;Mina Shahi","doi":"10.1007/s10921-024-01092-7","DOIUrl":null,"url":null,"abstract":"<div><p>Thermochemical storage using salt hydrates presents a promising energy storage method. Ensuring the long-term effectiveness of the system is critical, demanding both chemical and mechanical stability of material for repetitive cycling. Challenges arise from agglomeration and volume variations during discharging and charging, impacting the cyclability of thermochemical materials (TCM). For practical usage, the material is often used in a packed bed containing millimetre-sized grains. A micro-level analysis of changes in a packed bed system, along with a deeper understanding involving quantifying bed characteristics, is crucial. In this study, micro X-ray computed tomography (XCT) is used to compare changes in the packed bed before and after cycling the material. Findings indicate a significant decrease in pore size distribution in the bed after 10 cycles and a decrease in porosity from 41.34 to 19.91% accompanied by an increase in grain size, reducing void space. A comparison of effective thermal conductivity between the uncycled and cycled reactor indicates an increase after cycling. Additionally, the effective thermal conductivity is lower in the axial direction compared to the radial. XCT data from uncycled and cycled experiments are further used to observe percolation paths inside the bed. Furthermore, at a system scale fluid flow profile comparison is presented for uncycled and cycled packed beds. It has been observed that the permeability decreased and the pressure drop increased from 0.31 to 4.88 Pa after cycling.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01092-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01092-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Thermochemical storage using salt hydrates presents a promising energy storage method. Ensuring the long-term effectiveness of the system is critical, demanding both chemical and mechanical stability of material for repetitive cycling. Challenges arise from agglomeration and volume variations during discharging and charging, impacting the cyclability of thermochemical materials (TCM). For practical usage, the material is often used in a packed bed containing millimetre-sized grains. A micro-level analysis of changes in a packed bed system, along with a deeper understanding involving quantifying bed characteristics, is crucial. In this study, micro X-ray computed tomography (XCT) is used to compare changes in the packed bed before and after cycling the material. Findings indicate a significant decrease in pore size distribution in the bed after 10 cycles and a decrease in porosity from 41.34 to 19.91% accompanied by an increase in grain size, reducing void space. A comparison of effective thermal conductivity between the uncycled and cycled reactor indicates an increase after cycling. Additionally, the effective thermal conductivity is lower in the axial direction compared to the radial. XCT data from uncycled and cycled experiments are further used to observe percolation paths inside the bed. Furthermore, at a system scale fluid flow profile comparison is presented for uncycled and cycled packed beds. It has been observed that the permeability decreased and the pressure drop increased from 0.31 to 4.88 Pa after cycling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用显微 X 射线计算机断层扫描表征盐水合物床的变化
利用盐水合物进行热化学储能是一种前景广阔的储能方法。确保系统的长期有效性至关重要,这要求材料在重复循环过程中具有化学和机械稳定性。在放电和充电过程中,结块和体积变化会影响热化学材料(TCM)的循环性,从而带来挑战。在实际应用中,这种材料通常用于含有毫米级颗粒的填料床。对填料床系统中的变化进行微观分析,同时深入了解床层的量化特性至关重要。在这项研究中,使用微型 X 射线计算机断层扫描 (XCT) 来比较材料循环前后填料床的变化。研究结果表明,在循环 10 次之后,床层中的孔径分布明显减少,孔隙率从 41.34% 降至 19.91%,同时晶粒尺寸增大,空隙减少。对未循环和循环反应器的有效导热率进行比较后发现,循环后的有效导热率有所增加。此外,轴向的有效热导率低于径向。来自未循环和循环实验的 XCT 数据进一步用于观察床层内部的渗流路径。此外,还对未循环和循环填料床进行了系统规模的流体流动剖面比较。据观察,循环后渗透率降低,压降从 0.31 Pa 增加到 4.88 Pa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Electromagnetic Radiation Characteristics and Mechanical Properties of Cement-Mortar Under Impact Load Instance Segmentation XXL-CT Challenge of a Historic Airplane Publisher Correction: Intelligent Extraction of Surface Cracks on LNG Outer Tanks Based on Close-Range Image Point Clouds and Infrared Imagery Acoustic Emission Signal Feature Extraction for Bearing Faults Using ACF and GMOMEDA Modeling and Analysis of Ellipticity Dispersion Characteristics of Lamb Waves in Pre-stressed Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1