A Thermodynamic Landscape of Hydrogen Cyanide-Derived Molecules and Polymers

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2024-06-07 DOI:10.1021/acsearthspacechem.4c00088
Hilda Sandström, Fernando Izquierdo-Ruiz, Marco Cappelletti, Rana Dogan, Siddhant Sharma, Clara Bailey and Martin Rahm*, 
{"title":"A Thermodynamic Landscape of Hydrogen Cyanide-Derived Molecules and Polymers","authors":"Hilda Sandström,&nbsp;Fernando Izquierdo-Ruiz,&nbsp;Marco Cappelletti,&nbsp;Rana Dogan,&nbsp;Siddhant Sharma,&nbsp;Clara Bailey and Martin Rahm*,&nbsp;","doi":"10.1021/acsearthspacechem.4c00088","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen cyanide (HCN)-derived molecules and polymers are featured in several hypotheses on the origin of life. Over half a century of investigations into HCN self-reactions have led to many suggestions regarding the structural nature of the products and an even greater number of proposed polymerization pathways. A comprehensive overview of possible reactions and structures is missing. In this work, we use quantum chemical calculations to map the relative Gibbs free energy of most HCN-derived molecules and polymers that have been discussed in the literature. Our computed free energies indicate that several previously considered polymerization pathways are not spontaneous and should be discarded from future consideration. Among the most thermodynamically favored products are polyaminoimidazole and adenine.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00088","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen cyanide (HCN)-derived molecules and polymers are featured in several hypotheses on the origin of life. Over half a century of investigations into HCN self-reactions have led to many suggestions regarding the structural nature of the products and an even greater number of proposed polymerization pathways. A comprehensive overview of possible reactions and structures is missing. In this work, we use quantum chemical calculations to map the relative Gibbs free energy of most HCN-derived molecules and polymers that have been discussed in the literature. Our computed free energies indicate that several previously considered polymerization pathways are not spontaneous and should be discarded from future consideration. Among the most thermodynamically favored products are polyaminoimidazole and adenine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氰化氢衍生分子和聚合物的热力学图谱
:""""""""""""等字样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Ethynyl Radical Hydrogen Abstraction Energetics and Kinetics Utilizing High-Level Theory Better use the following title: Pathways to Interstellar Amides via Carbamoyl (NH2CO) Isomers by Radical-Neutral Reactions on Ice Grain Mantles Seawater Redox Conditions in the Late Paleoproterozoic: Insight from the North China Craton Seasonal Contrasts in Dissolved Selenium Dynamics in Subarctic Thaw Lakes Effect of Nitrogen on the Structure and Composition of Primordial Organic Matter Analogs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1