Mari Nakano, Kye Chung Park, Steven A. Trewick, Mary Morgan-Richards
{"title":"Food plant odor perception in three sympatric alpine grasshopper species (Orthoptera: Acrididae: Catantopinae) in Aotearoa New Zealand","authors":"Mari Nakano, Kye Chung Park, Steven A. Trewick, Mary Morgan-Richards","doi":"10.1007/s00049-024-00403-8","DOIUrl":null,"url":null,"abstract":"<div><p>The alpine grasshoppers <i>Sigaus nivalis</i>, <i>Sigaus australis</i> and <i>Sigaus nitidus</i> are sympatric in the central mountains of South Island, Aotearoa New Zealand. These grasshoppers feed on a range of alpine plants but show preference towards dicots over monocots. Because herbivorous insects often use smell and taste to locate and recognize food plants it was expected that these grasshoppers would show sensitivity to their favorite foods and potential sensitivity to nonhost plants. Here, we determined feeding preference in captivity allowing each of these three sympatric grasshoppers the same choice of six native alpine plant species. We analyzed the chemical compositions of the plants used in these experiments using gas-chromatograph coupled with mass-spectrometry (GC-MS) and then recorded olfactory responses in the grasshoppers to plant-derived smells (with synthetic compounds) using electroantennogram (EAG). The grasshoppers were able to distinguish between the potential food plants and ate the shrub <i>Coriaria sarmentosa</i> but not the grass <i>Chionochloa pallens</i>, however, the chemicals we detected in the six plant species were very similar. High sensitivity to fatty acid derived aldehydes (decanal, (<i>E,Z</i>)-2,6-nonadienal, hexanal) and a 6-carbon alcohol ((<i>Z</i>)-2-hexen-1-ol) compared to terpenoids (α-phellandrene, β-myrcene, β-ocimene, eucalyptol, (<i>S</i>)-(-)-limonene, (1<i>S</i>)-(-)-α-pinene) or an aromatic compound (2-phenylethanol) was recorded in the antennae of all three grasshopper species and no species- or sex-specific sensitivity to particular compounds was observed. As aldehydes and alcohols are emitted upon plant damage, it is possible that these generalist grasshoppers are sensitive to the smells of damaged plants rather than species-specific plant smells.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 2","pages":"71 - 81"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00403-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00403-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The alpine grasshoppers Sigaus nivalis, Sigaus australis and Sigaus nitidus are sympatric in the central mountains of South Island, Aotearoa New Zealand. These grasshoppers feed on a range of alpine plants but show preference towards dicots over monocots. Because herbivorous insects often use smell and taste to locate and recognize food plants it was expected that these grasshoppers would show sensitivity to their favorite foods and potential sensitivity to nonhost plants. Here, we determined feeding preference in captivity allowing each of these three sympatric grasshoppers the same choice of six native alpine plant species. We analyzed the chemical compositions of the plants used in these experiments using gas-chromatograph coupled with mass-spectrometry (GC-MS) and then recorded olfactory responses in the grasshoppers to plant-derived smells (with synthetic compounds) using electroantennogram (EAG). The grasshoppers were able to distinguish between the potential food plants and ate the shrub Coriaria sarmentosa but not the grass Chionochloa pallens, however, the chemicals we detected in the six plant species were very similar. High sensitivity to fatty acid derived aldehydes (decanal, (E,Z)-2,6-nonadienal, hexanal) and a 6-carbon alcohol ((Z)-2-hexen-1-ol) compared to terpenoids (α-phellandrene, β-myrcene, β-ocimene, eucalyptol, (S)-(-)-limonene, (1S)-(-)-α-pinene) or an aromatic compound (2-phenylethanol) was recorded in the antennae of all three grasshopper species and no species- or sex-specific sensitivity to particular compounds was observed. As aldehydes and alcohols are emitted upon plant damage, it is possible that these generalist grasshoppers are sensitive to the smells of damaged plants rather than species-specific plant smells.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.