Yuanlei Zhang, Xuanming Zhang, Zhiwei Sun, Weisheng Wang, Maoqing Ling, Zhijie Kong, Ye Liang, Jiudun Yan, Wen Liu
{"title":"Comparative Analysis of Ni/Ag and Ni/Au Contacts on GaN/AlGaN/GaN Platform","authors":"Yuanlei Zhang, Xuanming Zhang, Zhiwei Sun, Weisheng Wang, Maoqing Ling, Zhijie Kong, Ye Liang, Jiudun Yan, Wen Liu","doi":"10.1002/pssa.202400046","DOIUrl":null,"url":null,"abstract":"Herein, the electrical characteristics and Schottky barrier of Ni/Au and Ni/Ag contacts on the GaN/AlGaN/GaN heterojunction are investigated. Both contacts on the p‐GaN contact layer (Mg: ≈3 × 1019 cm−3) exhibit weak Schottky characteristics. The nonlinear current–voltage (I–V) characteristics are observed, leading to variations in contact resistance (RC) and sheet resistance (Rsh) with changing bias voltage. The Ni/Ag contact achieves a lower Schottky barrier height calculated by using the I–V method. Furthermore, when employing a p++‐GaN layer (Mg: ≈1 × 1020 cm−3) as the contact layer, the Ni/Ag contact forms an Ohmic contact without Schottky characteristics, achieving a satisfactory RC of 30.31 Ω mm. This result demonstrates its viability as a competitive candidate for p‐channel field‐effect transistors’ fabrication.","PeriodicalId":20150,"journal":{"name":"physica status solidi (a)","volume":" 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202400046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the electrical characteristics and Schottky barrier of Ni/Au and Ni/Ag contacts on the GaN/AlGaN/GaN heterojunction are investigated. Both contacts on the p‐GaN contact layer (Mg: ≈3 × 1019 cm−3) exhibit weak Schottky characteristics. The nonlinear current–voltage (I–V) characteristics are observed, leading to variations in contact resistance (RC) and sheet resistance (Rsh) with changing bias voltage. The Ni/Ag contact achieves a lower Schottky barrier height calculated by using the I–V method. Furthermore, when employing a p++‐GaN layer (Mg: ≈1 × 1020 cm−3) as the contact layer, the Ni/Ag contact forms an Ohmic contact without Schottky characteristics, achieving a satisfactory RC of 30.31 Ω mm. This result demonstrates its viability as a competitive candidate for p‐channel field‐effect transistors’ fabrication.