Biodegradable Poly(amino acid)–Bismuth Nanotheranostic Agents for CT/MR Imaging and Photothermal–Chemodynamic Synergistic Therapy

Fengfeng Xiao, Yongkang Liu, Yanhong Su, Xu He, Ligong Lu, Meixiao Zhan, Liewei Wen*, Yunlu Dai* and Bing Liu*, 
{"title":"Biodegradable Poly(amino acid)–Bismuth Nanotheranostic Agents for CT/MR Imaging and Photothermal–Chemodynamic Synergistic Therapy","authors":"Fengfeng Xiao,&nbsp;Yongkang Liu,&nbsp;Yanhong Su,&nbsp;Xu He,&nbsp;Ligong Lu,&nbsp;Meixiao Zhan,&nbsp;Liewei Wen*,&nbsp;Yunlu Dai* and Bing Liu*,&nbsp;","doi":"10.1021/cbe.4c00078","DOIUrl":null,"url":null,"abstract":"<p >Clearly delineating the tumor foci based on multimodal imaging techniques and precisely guiding the minimally invasive therapy are pivotal to completely remove tumors, especially for early micro-tumor lesions. Nevertheless, single-mode imaging techniques are difficult to accurately visualize the tumor region, and the mono-therapeutic strategy is hardly a complete removal of the tumor. In this study, we prepare a biodegradable amphiphilic polymer containing poly(aspartic acid). It is further self-assembled with Bi<sup>3+</sup> and ultrasmall Fe<sub>3</sub>O<sub>4</sub> to form a multifunctional nanocomplex (Bi/Fe<sub>3</sub>O<sub>4</sub>@P3), which served as a CT/MRI dual-imaging contrast agent and enhanced the photothermal/chemodynamic synergistic therapy. In addition, to enhance the photothermal efficiency, the thermal stress also elevated the level of intracellular H<sub>2</sub>O<sub>2</sub>, which would facilitate the Fenton reaction between Bi<sup>3+</sup>/Fe<sup>2+</sup> and H<sub>2</sub>O<sub>2</sub> and improve the chemodynamic therapy (CDT) efficacy. Particularly, Bi/Fe<sub>3</sub>O<sub>4</sub>@P3 would concurrently deplete the abundant intracellular GSH through the coordination of Bi<sup>3+</sup> with GSH to further potentiate the PTT/CDT synergistic tumoricidal efficacy. Therefore, our study was expected to provide a promising theranostic nano-agent and potential comprehensive therapeutic strategy for microtumors.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 5","pages":"448–460"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.4c00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clearly delineating the tumor foci based on multimodal imaging techniques and precisely guiding the minimally invasive therapy are pivotal to completely remove tumors, especially for early micro-tumor lesions. Nevertheless, single-mode imaging techniques are difficult to accurately visualize the tumor region, and the mono-therapeutic strategy is hardly a complete removal of the tumor. In this study, we prepare a biodegradable amphiphilic polymer containing poly(aspartic acid). It is further self-assembled with Bi3+ and ultrasmall Fe3O4 to form a multifunctional nanocomplex (Bi/Fe3O4@P3), which served as a CT/MRI dual-imaging contrast agent and enhanced the photothermal/chemodynamic synergistic therapy. In addition, to enhance the photothermal efficiency, the thermal stress also elevated the level of intracellular H2O2, which would facilitate the Fenton reaction between Bi3+/Fe2+ and H2O2 and improve the chemodynamic therapy (CDT) efficacy. Particularly, Bi/Fe3O4@P3 would concurrently deplete the abundant intracellular GSH through the coordination of Bi3+ with GSH to further potentiate the PTT/CDT synergistic tumoricidal efficacy. Therefore, our study was expected to provide a promising theranostic nano-agent and potential comprehensive therapeutic strategy for microtumors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 CT/MR 成像和光热-化学动力协同疗法的可生物降解聚(氨基酸)-铋纳米吸热剂
根据多模态成像技术明确划分肿瘤病灶,并精确指导微创治疗,是彻底切除肿瘤(尤其是早期微小肿瘤病灶)的关键。然而,单模成像技术难以准确观察肿瘤区域,单一的治疗策略也很难彻底切除肿瘤。在这项研究中,我们制备了一种含有聚天冬氨酸的可生物降解两亲聚合物。它与 Bi3+ 和超小型 Fe3O4 进一步自组装形成了多功能纳米复合物(Bi/Fe3O4@P3),可作为 CT/MRI 双成像造影剂并增强光热/化学动力协同治疗。此外,为了提高光热效应,热应力还能提高细胞内 H2O2 的水平,从而促进 Bi3+/Fe2+ 与 H2O2 之间的 Fenton 反应,提高化学动力疗法(CDT)的疗效。特别是,Bi/Fe3O4@P3 会通过 Bi3+ 与 GSH 的配位,同时消耗细胞内丰富的 GSH,进一步增强 PTT/CDT 的协同杀瘤功效。因此,我们的研究有望为微小肿瘤的治疗提供一种前景广阔的纳米治疗剂和潜在的综合治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Publication Information Issue Editorial Masthead Advanced Separation Materials and Processes Advanced Separation Materials and Processes. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1