{"title":"A composite spread spectrum sequence for underwater acoustic signal acquisition","authors":"Chenyu Zhang, Huabing Wu","doi":"10.1049/cmu2.12782","DOIUrl":null,"url":null,"abstract":"<p>Spread spectrum technology has been widely employed for positioning and communicating with autonomous underwater vehicles (AUVs), but conventional spread spectrum sequences lack confidentiality and reliability in UWA channel. Considering the limitations of conventional sequences and the characteristics of underwater acoustic (UWA) channel, a composite chaotic orthogonal sequence (CCOS) based on the UWA channel is proposed. The confidentiality of the CCOS is superior to that of the m-sequence, while the autocorrelation performance of the CCOS is superior to that of the orthogonal sequence. Moreover, the CCOS can compensate for the imbalance of logistic chaotic sequence when assigned certain initial values. Acquisition is a crucial component of accessing the spread spectrum signal; therefore, the acquisition performance indicates the applicability of the CCOS. The source–target model is established to simulate communication with an underwater moving target. To simulate the acquisition process, a parallel algorithm based on fast Fourier transform is adopted, and the entire simulation process is completed based on the BELLHOP ray acoustic model. Through data processing, the Doppler shift error is less than half of the frequency-search element. Furthermore, the acquisition probabilities of the CCOS with different numbers of bits are over 90%, which demonstrates the reliability of the CCOS.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 11","pages":"689-700"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12782","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12782","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Spread spectrum technology has been widely employed for positioning and communicating with autonomous underwater vehicles (AUVs), but conventional spread spectrum sequences lack confidentiality and reliability in UWA channel. Considering the limitations of conventional sequences and the characteristics of underwater acoustic (UWA) channel, a composite chaotic orthogonal sequence (CCOS) based on the UWA channel is proposed. The confidentiality of the CCOS is superior to that of the m-sequence, while the autocorrelation performance of the CCOS is superior to that of the orthogonal sequence. Moreover, the CCOS can compensate for the imbalance of logistic chaotic sequence when assigned certain initial values. Acquisition is a crucial component of accessing the spread spectrum signal; therefore, the acquisition performance indicates the applicability of the CCOS. The source–target model is established to simulate communication with an underwater moving target. To simulate the acquisition process, a parallel algorithm based on fast Fourier transform is adopted, and the entire simulation process is completed based on the BELLHOP ray acoustic model. Through data processing, the Doppler shift error is less than half of the frequency-search element. Furthermore, the acquisition probabilities of the CCOS with different numbers of bits are over 90%, which demonstrates the reliability of the CCOS.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf