Assessing magnetic particle content in algae using compact time domain nuclear magnetic resonance

Parker Huggins, Win Janvrin, Jake Martin, Ashley Womer, Austin R. J. Downey, John Ferry, Mohammed Baalousha, Jin Yan
{"title":"Assessing magnetic particle content in algae using compact time domain nuclear magnetic resonance","authors":"Parker Huggins, Win Janvrin, Jake Martin, Ashley Womer, Austin R. J. Downey, John Ferry, Mohammed Baalousha, Jin Yan","doi":"10.1117/12.3013987","DOIUrl":null,"url":null,"abstract":"The characterization of algae biomass is essential for ensuring the health of an aquatic ecosystem. Algae overgrowth can be detrimental to the chemical composition of a habitat and affect the availability of safe drinking water. In-situ sensors are commonplace in ocean and water quality monitoring scenarios where the collection of field data using readily deployable, cost-effective sensors is required. For this purpose, the use of compact time domain nuclear magnetic resonance (TD-NMR) is proposed for the assessment of Magnetic Particle (MP) content in algae. A custom NMR system capable of rapidly acquiring relaxometric data is introduced, and the T2 relaxation curves of algae samples sourced from Lake Wateree in South Carolina are analyzed. A clear correlation between the relaxation rate and MP concentration of the samples is observed, and the viability of the proposed scheme for MP-based estimations concerning algae is discussed.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The characterization of algae biomass is essential for ensuring the health of an aquatic ecosystem. Algae overgrowth can be detrimental to the chemical composition of a habitat and affect the availability of safe drinking water. In-situ sensors are commonplace in ocean and water quality monitoring scenarios where the collection of field data using readily deployable, cost-effective sensors is required. For this purpose, the use of compact time domain nuclear magnetic resonance (TD-NMR) is proposed for the assessment of Magnetic Particle (MP) content in algae. A custom NMR system capable of rapidly acquiring relaxometric data is introduced, and the T2 relaxation curves of algae samples sourced from Lake Wateree in South Carolina are analyzed. A clear correlation between the relaxation rate and MP concentration of the samples is observed, and the viability of the proposed scheme for MP-based estimations concerning algae is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用紧凑型时域核磁共振评估藻类中的磁性颗粒含量
藻类生物量的特征对于确保水生生态系统的健康至关重要。藻类过度生长会破坏栖息地的化学成分,影响安全饮用水的供应。原位传感器在海洋和水质监测场景中很常见,在这些场景中,需要使用可随时部署、成本效益高的传感器来收集现场数据。为此,建议使用紧凑型时域核磁共振(TD-NMR)来评估海藻中的磁微粒(MP)含量。介绍了一种能够快速获取弛豫测量数据的定制核磁共振系统,并分析了来自南卡罗来纳州瓦特里湖的藻类样本的 T2 驰豫曲线。观察到样品的弛豫速率与 MP 浓度之间存在明显的相关性,并讨论了基于 MP 的藻类估算建议方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data Exploring MOF-based micromotors as SERS sensors Adaptive object detection algorithms for resource constrained autonomous robotic systems Adaptive SIF-EKF estimation for fault detection in attitude control experiments A homogeneous low-resolution face recognition method using correlation features at the edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1