{"title":"Electronic and optical properties of ternary kagome Rb2Ni3S4: A density functional study","authors":"G. B. Acharya, Se-Hun Kim, Madhav Prasad Ghimire","doi":"10.1088/1361-651x/ad54e1","DOIUrl":null,"url":null,"abstract":"\n The application of semiconductors with optical properties has grown significantly in the development of semiconductor photovoltaics. Here, we explore the electronic and optical properties of ternary transition metal sulfide Rb2Ni3S4 by means of density functional theory. From the structural perspective, Ni atoms is found to form a kagome-like lattice in a two-dimensional plane of Rb2Ni3S4. From our calculations, Rb2Ni3S4 is found to be a semiconductor with an indirect band gap of ∼0.67 eV. Strong hybridization was observed between the S-3p with the Ni-3dxz and Ni-3dyz orbitals. Interestingly, a flat band was noticed below the Fermi level demonstrating one significant feature of kagome lattice. From the optical calculations, Rb2Ni3S4 is found to exhibit optical activity in both the visible and lower ultraviolet regions of the incident photon energies. The optical response suggests this material may be a potential candidate for opto-electronic device, given its ability to interact with light across a broad range of wavelengths. This work is expected to motivate the experimental group for transport measurements and may provide a new foundation in optics.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad54e1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of semiconductors with optical properties has grown significantly in the development of semiconductor photovoltaics. Here, we explore the electronic and optical properties of ternary transition metal sulfide Rb2Ni3S4 by means of density functional theory. From the structural perspective, Ni atoms is found to form a kagome-like lattice in a two-dimensional plane of Rb2Ni3S4. From our calculations, Rb2Ni3S4 is found to be a semiconductor with an indirect band gap of ∼0.67 eV. Strong hybridization was observed between the S-3p with the Ni-3dxz and Ni-3dyz orbitals. Interestingly, a flat band was noticed below the Fermi level demonstrating one significant feature of kagome lattice. From the optical calculations, Rb2Ni3S4 is found to exhibit optical activity in both the visible and lower ultraviolet regions of the incident photon energies. The optical response suggests this material may be a potential candidate for opto-electronic device, given its ability to interact with light across a broad range of wavelengths. This work is expected to motivate the experimental group for transport measurements and may provide a new foundation in optics.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.