Analysis of the extended Kalman filter's role in oceanic science

Khaled Obaideen, Mohammad A. AlShabi, Talal Bonny
{"title":"Analysis of the extended Kalman filter's role in oceanic science","authors":"Khaled Obaideen, Mohammad A. AlShabi, Talal Bonny","doi":"10.1117/12.3013854","DOIUrl":null,"url":null,"abstract":"This study delves into the Extended Kalman Filter's (EKF) use in ocean science through a detailed bibliometric and text mining examination. Tracing its roots back to the original Kalman Filter from the 1960s, the EKF has become crucial for managing nonlinear dynamics, especially in oceanography. Our analysis, drawing from Scopus data covering 1980-2023, delivers an extensive overview of the EKF's growth, applications, and cross-disciplinary influence in this area. We employed sophisticated bibliometric methods, including Biblioshiny, and text mining approaches via VOSviewer to dissect trends, and thematic groupings in EKF-related ocean science research. The results demonstrate a steady increase in EKF applications, particularly in autonomous underwater vehicle navigation, forecasting ocean currents, and modeling marine ecosystems. The bibliometric findings show its broad interdisciplinary appeal, while the text analysis underscores the EKF's integration with cutting-edge computational techniques and its significance in burgeoning oceanographic technologies. The paper highlights the EKF's indispensable role in ocean science, reflecting its historical importance and versatility in addressing contemporary challenges in marine technology. The study not only sheds light on the EKF's historical and current uses but also suggests potential future directions for research and innovation. It aims to offer crucial insights to researchers, academicians, and policy makers, underlining the EKF's significance in the dynamic, ever-changing realm of ocean science.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"25 17","pages":"130610K - 130610K-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the Extended Kalman Filter's (EKF) use in ocean science through a detailed bibliometric and text mining examination. Tracing its roots back to the original Kalman Filter from the 1960s, the EKF has become crucial for managing nonlinear dynamics, especially in oceanography. Our analysis, drawing from Scopus data covering 1980-2023, delivers an extensive overview of the EKF's growth, applications, and cross-disciplinary influence in this area. We employed sophisticated bibliometric methods, including Biblioshiny, and text mining approaches via VOSviewer to dissect trends, and thematic groupings in EKF-related ocean science research. The results demonstrate a steady increase in EKF applications, particularly in autonomous underwater vehicle navigation, forecasting ocean currents, and modeling marine ecosystems. The bibliometric findings show its broad interdisciplinary appeal, while the text analysis underscores the EKF's integration with cutting-edge computational techniques and its significance in burgeoning oceanographic technologies. The paper highlights the EKF's indispensable role in ocean science, reflecting its historical importance and versatility in addressing contemporary challenges in marine technology. The study not only sheds light on the EKF's historical and current uses but also suggests potential future directions for research and innovation. It aims to offer crucial insights to researchers, academicians, and policy makers, underlining the EKF's significance in the dynamic, ever-changing realm of ocean science.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展卡尔曼滤波器在海洋科学中的作用分析
本研究通过详细的文献计量学和文本挖掘研究,深入探讨了扩展卡尔曼滤波器(EKF)在海洋科学中的应用。EKF 的起源可追溯到 20 世纪 60 年代的原始卡尔曼滤波器,它已成为管理非线性动态的关键,尤其是在海洋学领域。我们利用 Scopus 1980-2023 年的数据进行分析,广泛概述了 EKF 在该领域的发展、应用和跨学科影响。我们采用了复杂的文献计量方法(包括 Biblioshiny)和文本挖掘方法(通过 VOSviewer)来剖析 EKF 相关海洋科学研究的趋势和主题分组。研究结果表明,EKF 的应用稳步增长,尤其是在水下航行器自主导航、洋流预报和海洋生态系统建模方面。文献计量学研究结果显示了 EKF 广泛的跨学科吸引力,而文本分析则强调了 EKF 与前沿计算技术的结合及其在新兴海洋学技术中的重要意义。论文强调了 EKF 在海洋科学中不可或缺的作用,反映了其在应对当代海洋技术挑战方面的历史重要性和多功能性。研究不仅揭示了 EKF 的历史和当前用途,还提出了未来潜在的研究和创新方向。它旨在为研究人员、学术界人士和政策制定者提供重要的见解,强调 EKF 在动态、不断变化的海洋科学领域中的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data Exploring MOF-based micromotors as SERS sensors Adaptive object detection algorithms for resource constrained autonomous robotic systems Adaptive SIF-EKF estimation for fault detection in attitude control experiments A homogeneous low-resolution face recognition method using correlation features at the edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1