Deep reinforcement learning to assess lower extremity movement intention and assist a rehabilitation exoskeleton

R. Dizor, Anil Raj, Bryan M. Gonzalez, Garhett Smith, zachary carter, domingues rodrigues, jacob newton
{"title":"Deep reinforcement learning to assess lower extremity movement intention and assist a rehabilitation exoskeleton","authors":"R. Dizor, Anil Raj, Bryan M. Gonzalez, Garhett Smith, zachary carter, domingues rodrigues, jacob newton","doi":"10.1117/12.3013039","DOIUrl":null,"url":null,"abstract":"This paper introduces a pioneering approach for controlling a unilateral lower extremity exoskeleton designed for rehabilitation and enhancing the quality of life for individuals with neuromuscular weakness of the lower limbs. At the core of our methodology is the integration of Long Short-Term Memory (LSTM) networks with Proximal Policy Optimization (PPO) models, utilizing a deep reinforcement learning framework to interpret and predict user movement intentions in real time. By harnessing sensor fusion that combines surface electromyography (sEMG) and Inertial Measurement Units (IMU) from sensor arrays placed around the quadriceps and gastrocnemius muscles, our system employs an adaptive nonlinear sliding mode control with Pneumatic Artificial Muscles (PAMs), thereby directing the exoskeleton's movement and positioning. The LSTM network processes temporal sequences of sensor data to capture the dynamics of human motion, while the PPO model optimizes the control policy to ensure smooth and responsive movements aligned with the user intentions. Focusing initially on basic maneuvers integral to Activities of Daily Living (ADL), our system demonstrates promising preliminary results in mimicking natural limb movements, laying the groundwork for future clinical applications. This paper specifically delves into the utilization of the LSTM-PPO framework for controlling an avatar prior to testing the exoskeleton, representing a significant step towards realizing a responsive and intuitive exoskeleton control system.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"3 7","pages":"1305805 - 1305805-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a pioneering approach for controlling a unilateral lower extremity exoskeleton designed for rehabilitation and enhancing the quality of life for individuals with neuromuscular weakness of the lower limbs. At the core of our methodology is the integration of Long Short-Term Memory (LSTM) networks with Proximal Policy Optimization (PPO) models, utilizing a deep reinforcement learning framework to interpret and predict user movement intentions in real time. By harnessing sensor fusion that combines surface electromyography (sEMG) and Inertial Measurement Units (IMU) from sensor arrays placed around the quadriceps and gastrocnemius muscles, our system employs an adaptive nonlinear sliding mode control with Pneumatic Artificial Muscles (PAMs), thereby directing the exoskeleton's movement and positioning. The LSTM network processes temporal sequences of sensor data to capture the dynamics of human motion, while the PPO model optimizes the control policy to ensure smooth and responsive movements aligned with the user intentions. Focusing initially on basic maneuvers integral to Activities of Daily Living (ADL), our system demonstrates promising preliminary results in mimicking natural limb movements, laying the groundwork for future clinical applications. This paper specifically delves into the utilization of the LSTM-PPO framework for controlling an avatar prior to testing the exoskeleton, representing a significant step towards realizing a responsive and intuitive exoskeleton control system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度强化学习评估下肢运动意图并辅助康复外骨骼
本文介绍了一种控制单侧下肢外骨骼的开创性方法,该外骨骼专为下肢神经肌肉无力患者的康复和提高生活质量而设计。我们方法的核心是将长短期记忆(LSTM)网络与近端策略优化(PPO)模型相结合,利用深度强化学习框架实时解释和预测用户的运动意图。我们的系统利用传感器融合技术,将放置在股四头肌和腓肠肌周围的传感器阵列中的表面肌电图(sEMG)和惯性测量单元(IMU)结合起来,通过气动人工肌肉(PAM)采用自适应非线性滑动模式控制,从而引导外骨骼的运动和定位。LSTM 网络处理传感器数据的时间序列,以捕捉人体运动的动态,而 PPO 模型则优化控制策略,以确保运动顺畅、反应灵敏,符合用户的意图。我们的系统最初侧重于日常生活活动(ADL)中不可或缺的基本动作,在模仿自然肢体运动方面取得了可喜的初步成果,为未来的临床应用奠定了基础。本文特别探讨了在测试外骨骼之前利用 LSTM-PPO 框架控制化身的问题,这是实现反应灵敏、直观的外骨骼控制系统的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data Exploring MOF-based micromotors as SERS sensors Adaptive object detection algorithms for resource constrained autonomous robotic systems Adaptive SIF-EKF estimation for fault detection in attitude control experiments A homogeneous low-resolution face recognition method using correlation features at the edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1