Optimal control of linear Gaussian quantum systems via quantum learning control

IF 2.6 2区 物理与天体物理 Q2 OPTICS Physical Review a Pub Date : 2024-06-06 DOI:10.1103/PhysRevA.109.063508
Yu-Hong Liu, Yexiong Zeng, Qing-Shou Tan, Daoyi Dong, Franco Nori, Jie‐Qiao Liao
{"title":"Optimal control of linear Gaussian quantum systems via quantum learning control","authors":"Yu-Hong Liu, Yexiong Zeng, Qing-Shou Tan, Daoyi Dong, Franco Nori, Jie‐Qiao Liao","doi":"10.1103/PhysRevA.109.063508","DOIUrl":null,"url":null,"abstract":"Efficiently controlling linear Gaussian quantum (LGQ) systems is a significant task in both the study of fundamental quantum theory and the development of modern quantum technology. Here, we propose a general quantum-learning-control method for optimally controlling LGQ systems based on the gradient-descent algorithm. Our approach flexibly designs the loss function for diverse tasks by utilizing first- and second-order moments that completely describe the quantum state of LGQ systems. We demonstrate both deep optomechanical cooling and large optomechanical entanglement using this approach. Our approach enables the fast and deep ground-state cooling of a mechanical resonator within a short time, surpassing the limitations of sideband cooling in the continuous-wave driven strong-coupling regime. Furthermore, optomechanical entanglement could be generated remarkably fast and surpass several times the corresponding steady-state entanglement, even when the thermal phonon occupation reaches one hundred. This work will not only broaden the application of quantum learning control, but also open an avenue for optimal control of LGQ systems.","PeriodicalId":48702,"journal":{"name":"Physical Review a","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevA.109.063508","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently controlling linear Gaussian quantum (LGQ) systems is a significant task in both the study of fundamental quantum theory and the development of modern quantum technology. Here, we propose a general quantum-learning-control method for optimally controlling LGQ systems based on the gradient-descent algorithm. Our approach flexibly designs the loss function for diverse tasks by utilizing first- and second-order moments that completely describe the quantum state of LGQ systems. We demonstrate both deep optomechanical cooling and large optomechanical entanglement using this approach. Our approach enables the fast and deep ground-state cooling of a mechanical resonator within a short time, surpassing the limitations of sideband cooling in the continuous-wave driven strong-coupling regime. Furthermore, optomechanical entanglement could be generated remarkably fast and surpass several times the corresponding steady-state entanglement, even when the thermal phonon occupation reaches one hundred. This work will not only broaden the application of quantum learning control, but also open an avenue for optimal control of LGQ systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过量子学习控制实现线性高斯量子系统的最优控制
高效控制线性高斯量子(LGQ)系统是量子基础理论研究和现代量子技术发展的一项重要任务。在此,我们提出了一种基于梯度下降算法的通用量子学习控制方法,用于优化控制线性高斯量子系统。我们的方法利用完全描述 LGQ 系统量子态的一阶和二阶矩,灵活地设计了适用于不同任务的损失函数。我们利用这种方法演示了深度光机械冷却和大光机械纠缠。我们的方法能在短时间内实现机械谐振器的快速和深度基态冷却,超越了连续波驱动强耦合机制中边带冷却的限制。此外,即使热声子占用率达到 100,光机械纠缠也能快速产生,并超过相应稳态纠缠的数倍。这项工作不仅拓宽了量子学习控制的应用范围,还为 LGQ 系统的优化控制开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review a
Physical Review a OPTICSPHYSICS, ATOMIC, MOLECULAR & CHEMICA-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.30
自引率
24.10%
发文量
2086
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
期刊最新文献
Efficient estimation of the quantum Chernoff bound Comprehensive characterization of an apparatus for cold electromagnetic dysprosium dipoles Dependence of the number-weighted angular distribution of Compton-scattered photon beams on the laser intensity Laser resonance chromatography of Th3+229 in He: An ab ini Topological edge modes and phase transitions in a critical fermionic chain with long-range interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1