{"title":"High-precision apple recognition and localization method based on RGB-D and improved SOLOv2 instance segmentation","authors":"Shixi Tang, Zilin Xia, Jinan Gu, Wenbo Wang, Zedong Huang, Wenhao Zhang","doi":"10.3389/fsufs.2024.1403872","DOIUrl":null,"url":null,"abstract":"Intelligent apple-picking robots can significantly improve the efficiency of apple picking, and the realization of fast and accurate recognition and localization of apples is the prerequisite and foundation for the operation of picking robots. Existing apple recognition and localization methods primarily focus on object detection and semantic segmentation techniques. However, these methods often suffer from localization errors when facing occlusion and overlapping issues. Furthermore, the few instance segmentation methods are also inefficient and heavily dependent on detection results. Therefore, this paper proposes an apple recognition and localization method based on RGB-D and an improved SOLOv2 instance segmentation approach. To improve the efficiency of the instance segmentation network, the EfficientNetV2 is employed as the feature extraction network, known for its high parameter efficiency. To enhance segmentation accuracy when apples are occluded or overlapping, a lightweight spatial attention module is proposed. This module improves the model position sensitivity so that positional features can differentiate between overlapping objects when their semantic features are similar. To accurately determine the apple-picking points, an RGB-D-based apple localization method is introduced. Through comparative experimental analysis, the improved SOLOv2 instance segmentation method has demonstrated remarkable performance. Compared to SOLOv2, the F1 score, mAP, and mIoU on the apple instance segmentation dataset have increased by 2.4, 3.6, and 3.8%, respectively. Additionally, the model’s Params and FLOPs have decreased by 1.94M and 31 GFLOPs, respectively. A total of 60 samples were gathered for the analysis of localization errors. The findings indicate that the proposed method achieves high precision in localization, with errors in the X, Y, and Z axes ranging from 0 to 3.95 mm, 0 to 5.16 mm, and 0 to 1 mm, respectively.","PeriodicalId":504481,"journal":{"name":"Frontiers in Sustainable Food Systems","volume":"33 1‐2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sustainable Food Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsufs.2024.1403872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent apple-picking robots can significantly improve the efficiency of apple picking, and the realization of fast and accurate recognition and localization of apples is the prerequisite and foundation for the operation of picking robots. Existing apple recognition and localization methods primarily focus on object detection and semantic segmentation techniques. However, these methods often suffer from localization errors when facing occlusion and overlapping issues. Furthermore, the few instance segmentation methods are also inefficient and heavily dependent on detection results. Therefore, this paper proposes an apple recognition and localization method based on RGB-D and an improved SOLOv2 instance segmentation approach. To improve the efficiency of the instance segmentation network, the EfficientNetV2 is employed as the feature extraction network, known for its high parameter efficiency. To enhance segmentation accuracy when apples are occluded or overlapping, a lightweight spatial attention module is proposed. This module improves the model position sensitivity so that positional features can differentiate between overlapping objects when their semantic features are similar. To accurately determine the apple-picking points, an RGB-D-based apple localization method is introduced. Through comparative experimental analysis, the improved SOLOv2 instance segmentation method has demonstrated remarkable performance. Compared to SOLOv2, the F1 score, mAP, and mIoU on the apple instance segmentation dataset have increased by 2.4, 3.6, and 3.8%, respectively. Additionally, the model’s Params and FLOPs have decreased by 1.94M and 31 GFLOPs, respectively. A total of 60 samples were gathered for the analysis of localization errors. The findings indicate that the proposed method achieves high precision in localization, with errors in the X, Y, and Z axes ranging from 0 to 3.95 mm, 0 to 5.16 mm, and 0 to 1 mm, respectively.