Metric Space Indices for Dynamic Optimization in a Peer to Peer-Based Image Classification Crowdsourcing Platform

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2024-06-06 DOI:10.3390/fi16060202
Fernando Loor, V. Gil-Costa, Mauricio Marín
{"title":"Metric Space Indices for Dynamic Optimization in a Peer to Peer-Based Image Classification Crowdsourcing Platform","authors":"Fernando Loor, V. Gil-Costa, Mauricio Marín","doi":"10.3390/fi16060202","DOIUrl":null,"url":null,"abstract":"Large-scale computer platforms that process users’ online requests must be capable of handling unexpected spikes in arrival rates. These platforms, which are composed of distributed components, can be configured with parameters to ensure both the quality of the results obtained for each request and low response times. In this work, we propose a dynamic optimization engine based on metric space indexing to address this problem. The engine is integrated into the platform and periodically monitors performance metrics to determine whether new configuration parameter values need to be computed. Our case study focuses on a P2P platform designed for classifying crowdsourced images related to natural disasters. We evaluate our approach under scenarios with high and low workloads, comparing it against alternative methods based on deep reinforcement learning. The results show that our approach reduces processing time by an average of 40%.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16060202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale computer platforms that process users’ online requests must be capable of handling unexpected spikes in arrival rates. These platforms, which are composed of distributed components, can be configured with parameters to ensure both the quality of the results obtained for each request and low response times. In this work, we propose a dynamic optimization engine based on metric space indexing to address this problem. The engine is integrated into the platform and periodically monitors performance metrics to determine whether new configuration parameter values need to be computed. Our case study focuses on a P2P platform designed for classifying crowdsourced images related to natural disasters. We evaluate our approach under scenarios with high and low workloads, comparing it against alternative methods based on deep reinforcement learning. The results show that our approach reduces processing time by an average of 40%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于点对点的图像分类众包平台中用于动态优化的度量空间指标
处理用户在线请求的大型计算机平台必须能够处理意外的峰值到达率。这些平台由分布式组件组成,可以通过参数配置来确保每个请求所获结果的质量和较低的响应时间。在这项工作中,我们提出了一个基于度量空间索引的动态优化引擎来解决这个问题。该引擎集成到平台中,定期监控性能指标,以确定是否需要计算新的配置参数值。我们的案例研究侧重于一个 P2P 平台,该平台旨在对与自然灾害相关的众包图像进行分类。我们评估了我们的方法在高工作量和低工作量情况下的应用,并将其与基于深度强化学习的其他方法进行了比较。结果表明,我们的方法平均缩短了 40% 的处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Testing Stimulus Equivalence in Transformer-Based Agents Dynamic Fashion Video Synthesis from Static Imagery A Survey on Emerging Blockchain Technology Platforms for Securing the Internet of Things Cross-Domain Fake News Detection Using a Prompt-Based Approach Energy Efficiency and Load Optimization in Heterogeneous Networks through Dynamic Sleep Strategies: A Constraint-Based Optimization Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1