Improvements to global ionospheric forecasting with a recurrent convolutional neural network

Joseph Dailey, Khanh D. Pham
{"title":"Improvements to global ionospheric forecasting with a recurrent convolutional neural network","authors":"Joseph Dailey, Khanh D. Pham","doi":"10.1117/12.3023846","DOIUrl":null,"url":null,"abstract":"Single-frequency GNSS users are reliant on estimates of the Total Electron Content (TEC) along lines of sight to navigation satellites to correct for ionospheric propagation delay and the resulting positioning errors. The parametric correction methods in use (Klobuchar’s algorithm for GPS and the NeQuick-G model for Galileo) can compensate for a large fraction of the delay but are hindered by using only a few daily coefficients to describe the ground truth ionosphere state. This loss of state information is particularly detrimental during periods of high deviation from baseline TEC patterns, e.g. solar weather events. This work describes an autoregressive RNN/CNN approach for spatiotemporal TEC forecasting from windowed historical map products, preserving local temporal and geospatial dependence between samples. By leveraging a large dataset spanning from 2000-2020 and applying convolutional transformations over both the temporal and spatial dimensions of the data, this model exhibits improved performance for time horizons up to 48 hours, compared to neural network-based approaches described in the literature to date.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"3 1","pages":"130620C - 130620C-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3023846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-frequency GNSS users are reliant on estimates of the Total Electron Content (TEC) along lines of sight to navigation satellites to correct for ionospheric propagation delay and the resulting positioning errors. The parametric correction methods in use (Klobuchar’s algorithm for GPS and the NeQuick-G model for Galileo) can compensate for a large fraction of the delay but are hindered by using only a few daily coefficients to describe the ground truth ionosphere state. This loss of state information is particularly detrimental during periods of high deviation from baseline TEC patterns, e.g. solar weather events. This work describes an autoregressive RNN/CNN approach for spatiotemporal TEC forecasting from windowed historical map products, preserving local temporal and geospatial dependence between samples. By leveraging a large dataset spanning from 2000-2020 and applying convolutional transformations over both the temporal and spatial dimensions of the data, this model exhibits improved performance for time horizons up to 48 hours, compared to neural network-based approaches described in the literature to date.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用递归卷积神经网络改进全球电离层预报
单频全球导航卫星系统用户依赖导航卫星视线沿线的总电子含量(TEC)估算值来校正电离层传播延迟和由此产生的定位误差。目前使用的参数校正方法(用于全球定位系统的 Klobuchar 算法和用于伽利略系统的 NeQuick-G 模型)可以补偿很大一部分延迟,但由于只使用几个日常系数来描述地面实况电离层状态而受到阻碍。这种状态信息的缺失在基线 TEC 模式高度偏离期间(如太阳气象事件)尤为不利。这项工作描述了一种自回归 RNN/CNN 方法,用于从窗口历史地图产品中预报时空 TEC,保留了样本之间的局部时间和地理空间依赖性。通过利用跨度为 2000-2020 年的大型数据集,并对数据的时间和空间维度进行卷积变换,与迄今为止文献中描述的基于神经网络的方法相比,该模型在最长 48 小时的时间跨度内表现出更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data Exploring MOF-based micromotors as SERS sensors Adaptive object detection algorithms for resource constrained autonomous robotic systems Adaptive SIF-EKF estimation for fault detection in attitude control experiments A homogeneous low-resolution face recognition method using correlation features at the edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1