{"title":"Carbon Footprint and Emission Reduction Strategies During Potato Cultivation","authors":"Jatish Chandra Biswas, Md Mozammel Haque, Sheikh Ishtiaque, Sohela Akhter, Md Mizanur Rahman, Pil Joo Kim","doi":"10.1007/s40003-024-00736-4","DOIUrl":null,"url":null,"abstract":"<div><p>Data on carbon footprint of potato are scanty in Bangladesh and in many other countries in the globe, although it is an important crop. Both life cycle-based (LCB) and field scaled measured (FSM) greenhouse gas (GHG) emissions were considered for determination of carbon footprint for Bangladesh compared to top 20 potato producing countries in the world. Carbon footprint was 0.16 kg CO<sub>2</sub> eq kg<sup>−1</sup> (LCB) for producing potato in Bangladesh. Fertilizers and irrigation water managements were the dominant inputs for GHG emissions in Bangladesh. Based on available data sources, GHG emission was the highest in USA (13206 kg CO<sub>2</sub> eq ha<sup>−1</sup>) followed by Germany (6210.93 kg CO<sub>2</sub> eq ha<sup>−1</sup>). The position of Bangladesh was fifth (4619 kg CO<sub>2</sub> eq ha<sup>−1</sup>) considering LCB estimates and 12th (1279 kg CO<sub>2</sub> eq ha<sup>−1</sup>) as FSM basis. Considering total potato areas, China was the top emitter (13.75 million tons, MT CO<sub>2</sub> eq) followed by India (7.35 MT CO<sub>2</sub> eq) and the position of Bangladesh was 6th (LCB). Apparently, there could be carbon sequestration based on FSM data, but net emission takes place when LCB assessment is considered. Total GHG emissions from potato-based cropping patterns and evaluating their total balances can provide a real scenario of net ecosystem carbon balance (NECB) in Bangladesh and in other countries having similar environments. Fertilizer and water management, choice of cultivar, tillage system, and sowing time need to be fine-tuned along with adoption of suitable crop rotations for reducing GHG emission during potato cultivation.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":"13 4","pages":"814 - 823"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-024-00736-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Data on carbon footprint of potato are scanty in Bangladesh and in many other countries in the globe, although it is an important crop. Both life cycle-based (LCB) and field scaled measured (FSM) greenhouse gas (GHG) emissions were considered for determination of carbon footprint for Bangladesh compared to top 20 potato producing countries in the world. Carbon footprint was 0.16 kg CO2 eq kg−1 (LCB) for producing potato in Bangladesh. Fertilizers and irrigation water managements were the dominant inputs for GHG emissions in Bangladesh. Based on available data sources, GHG emission was the highest in USA (13206 kg CO2 eq ha−1) followed by Germany (6210.93 kg CO2 eq ha−1). The position of Bangladesh was fifth (4619 kg CO2 eq ha−1) considering LCB estimates and 12th (1279 kg CO2 eq ha−1) as FSM basis. Considering total potato areas, China was the top emitter (13.75 million tons, MT CO2 eq) followed by India (7.35 MT CO2 eq) and the position of Bangladesh was 6th (LCB). Apparently, there could be carbon sequestration based on FSM data, but net emission takes place when LCB assessment is considered. Total GHG emissions from potato-based cropping patterns and evaluating their total balances can provide a real scenario of net ecosystem carbon balance (NECB) in Bangladesh and in other countries having similar environments. Fertilizer and water management, choice of cultivar, tillage system, and sowing time need to be fine-tuned along with adoption of suitable crop rotations for reducing GHG emission during potato cultivation.
期刊介绍:
The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.